三对角线块Toeplitz线性系统的GMRES

Pub Date : 2018-12-30 DOI:10.3336/GM.53.2.12
R. Doostaki, Young Researchers
{"title":"三对角线块Toeplitz线性系统的GMRES","authors":"R. Doostaki, Young Researchers","doi":"10.3336/GM.53.2.12","DOIUrl":null,"url":null,"abstract":"We study the generalized minimal residual (GMRES) method for solving tridiagonal block Toeplitz linear system Ax = b with m × m diagonal blocks. For m = 1, these systems becomes tridiagonal Toeplitz linear systems, and for m > 1, A becomes an m-tridiagonal Toeplitz matrix. Our first main goal is to find the exact expressions for the GMRES residuals for b = (B1, 0, . . . , 0) , b = (0, . . . , 0, BN ) T , where B1 and BN are m-vectors. The upper and lower bounds for the GMRES residuals were established to explain numerical behavior. The upper bounds for the GMRES residuals on tridiagonal block Toeplitz linear systems has been studied previously in [1]. Also, in this paper, we consider the normal tridiagonal block Toeplitz linear systems. The second main goal is to find the lower bounds for the GMRES residuals for these systems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GMRES on tridiagonal block Toeplitz linear systems\",\"authors\":\"R. Doostaki, Young Researchers\",\"doi\":\"10.3336/GM.53.2.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the generalized minimal residual (GMRES) method for solving tridiagonal block Toeplitz linear system Ax = b with m × m diagonal blocks. For m = 1, these systems becomes tridiagonal Toeplitz linear systems, and for m > 1, A becomes an m-tridiagonal Toeplitz matrix. Our first main goal is to find the exact expressions for the GMRES residuals for b = (B1, 0, . . . , 0) , b = (0, . . . , 0, BN ) T , where B1 and BN are m-vectors. The upper and lower bounds for the GMRES residuals were established to explain numerical behavior. The upper bounds for the GMRES residuals on tridiagonal block Toeplitz linear systems has been studied previously in [1]. Also, in this paper, we consider the normal tridiagonal block Toeplitz linear systems. The second main goal is to find the lower bounds for the GMRES residuals for these systems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/GM.53.2.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/GM.53.2.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了求解具有m × m对角块的三对角块Toeplitz线性方程组Ax = b的广义最小残差(GMRES)方法。当m = 1时,这些系统成为三对角Toeplitz线性系统,当m > 1时,A成为m-三对角Toeplitz矩阵。我们的第一个主要目标是找到b = (B1, 0,…)时GMRES残差的精确表达式。, 0), b =(0,…, 0, BN) T,其中B1和BN是m向量。建立了GMRES残差的上界和下界来解释数值行为。三对角线块Toeplitz线性系统的GMRES残差上界已在文献[1]中进行了研究。此外,本文还考虑了正规的三对角线块Toeplitz线性系统。第二个主要目标是找到这些系统的GMRES残差的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
GMRES on tridiagonal block Toeplitz linear systems
We study the generalized minimal residual (GMRES) method for solving tridiagonal block Toeplitz linear system Ax = b with m × m diagonal blocks. For m = 1, these systems becomes tridiagonal Toeplitz linear systems, and for m > 1, A becomes an m-tridiagonal Toeplitz matrix. Our first main goal is to find the exact expressions for the GMRES residuals for b = (B1, 0, . . . , 0) , b = (0, . . . , 0, BN ) T , where B1 and BN are m-vectors. The upper and lower bounds for the GMRES residuals were established to explain numerical behavior. The upper bounds for the GMRES residuals on tridiagonal block Toeplitz linear systems has been studied previously in [1]. Also, in this paper, we consider the normal tridiagonal block Toeplitz linear systems. The second main goal is to find the lower bounds for the GMRES residuals for these systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信