光弹性材料在直径压缩下的圆盘校正

IF 2.4 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
M. Solaguren-Beascoa Fernández
{"title":"光弹性材料在直径压缩下的圆盘校正","authors":"M. Solaguren-Beascoa Fernández","doi":"10.1515/mt-2023-0076","DOIUrl":null,"url":null,"abstract":"Abstract The disc under diametral compression is one of the preferred specimens for the calibration of photoelastic materials. Current calibration methods have some limitations from a metrological point of view, because they do not provide measurement uncertainties and they assume that observations are independent and with the same accuracy. In this work, a new calibration method is proposed to avoid the above-mentioned metrological limitations: The generalized least squares by Lagrange multipliers method. This methodology accepts correlated input quantities or with different accuracy through the input covariance matrix, and it provides, through a least-squares adjustment, the estimates of the quantities to be measured and their associated standard uncertainties. The application of the method shows coherent results and it also provides a chi-square value that can be used to test the consistency of the measurement model, and the normalized deviations between the input estimates and their fitted values, which are a tool to identify potential outliers. Results reveal a great influence of the radius of the specimen on the uncertainty of the stress-optic coefficient measurement, which casts serious doubt on previous affirmations about the disc in compression is preferable over other specimens.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":"14 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of photoelastic materials with the disc under diametral compression\",\"authors\":\"M. Solaguren-Beascoa Fernández\",\"doi\":\"10.1515/mt-2023-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The disc under diametral compression is one of the preferred specimens for the calibration of photoelastic materials. Current calibration methods have some limitations from a metrological point of view, because they do not provide measurement uncertainties and they assume that observations are independent and with the same accuracy. In this work, a new calibration method is proposed to avoid the above-mentioned metrological limitations: The generalized least squares by Lagrange multipliers method. This methodology accepts correlated input quantities or with different accuracy through the input covariance matrix, and it provides, through a least-squares adjustment, the estimates of the quantities to be measured and their associated standard uncertainties. The application of the method shows coherent results and it also provides a chi-square value that can be used to test the consistency of the measurement model, and the normalized deviations between the input estimates and their fitted values, which are a tool to identify potential outliers. Results reveal a great influence of the radius of the specimen on the uncertainty of the stress-optic coefficient measurement, which casts serious doubt on previous affirmations about the disc in compression is preferable over other specimens.\",\"PeriodicalId\":18231,\"journal\":{\"name\":\"Materials Testing\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/mt-2023-0076\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0076","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

摘要直径压缩圆盘是光弹性材料标定的首选试样之一。从计量学的角度来看,目前的校准方法有一些局限性,因为它们不提供测量不确定度,并且假设观测是独立的,具有相同的精度。本文提出了一种新的校正方法:拉格朗日乘子法广义最小二乘法。该方法通过输入协方差矩阵接受相关输入量或不同精度的输入量,并通过最小二乘调整提供待测量及其相关标准不确定度的估计。该方法的应用显示出一致的结果,它还提供了一个卡方值,可以用来检验测量模型的一致性,以及输入估计与其拟合值之间的归一化偏差,这是识别潜在异常值的工具。结果表明,试样的半径对应力-光学系数测量的不确定度有很大的影响,这对先前关于压缩圆盘优于其他试样的断言产生了严重的怀疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration of photoelastic materials with the disc under diametral compression
Abstract The disc under diametral compression is one of the preferred specimens for the calibration of photoelastic materials. Current calibration methods have some limitations from a metrological point of view, because they do not provide measurement uncertainties and they assume that observations are independent and with the same accuracy. In this work, a new calibration method is proposed to avoid the above-mentioned metrological limitations: The generalized least squares by Lagrange multipliers method. This methodology accepts correlated input quantities or with different accuracy through the input covariance matrix, and it provides, through a least-squares adjustment, the estimates of the quantities to be measured and their associated standard uncertainties. The application of the method shows coherent results and it also provides a chi-square value that can be used to test the consistency of the measurement model, and the normalized deviations between the input estimates and their fitted values, which are a tool to identify potential outliers. Results reveal a great influence of the radius of the specimen on the uncertainty of the stress-optic coefficient measurement, which casts serious doubt on previous affirmations about the disc in compression is preferable over other specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Testing
Materials Testing 工程技术-材料科学:表征与测试
CiteScore
4.20
自引率
36.00%
发文量
165
审稿时长
4-8 weeks
期刊介绍: Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信