{"title":"基于美国经济指标的标准普尔500指数价格建模:机器学习方法","authors":"Ligita Gasparėnienė, Rita Remeikienė, Aleksejus Sosidko, Vigita Vėbraitė","doi":"10.5755/j01.ee.32.4.27985","DOIUrl":null,"url":null,"abstract":"In order to forecast stock prices based on economic indicators, many studies have been conducted using well-known statistical methods. Meanwhile, since ~2010 as the power of computers improved, new methods of machine learning began to be used. It would be interesting to know how those algorithms using a variety of mathematical and statistical methods, are able to predict the stock market. The purpose of this article is to model the monthly price of the S&P 500 index based on U.S. economic indicators using statistical, machine learning, deep learning approaches and finally compare metrics of those models. After the selection of indicators according to the data visualization, multicollinearity tests, statistical significance tests, 3 out of 27 indicators remained. The main finding of the research is that the authors improved the baseline statistical linear regression model by 19 percent using a ML Random Forest algorithm. In this way, model achieved accuracy 97.68% of prediction S&P 500 index.","PeriodicalId":46830,"journal":{"name":"Inzinerine Ekonomika-Engineering Economics","volume":"142 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling of S&P 500 Index Price Based on U.S. Economic Indicators: Machine Learning Approach\",\"authors\":\"Ligita Gasparėnienė, Rita Remeikienė, Aleksejus Sosidko, Vigita Vėbraitė\",\"doi\":\"10.5755/j01.ee.32.4.27985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to forecast stock prices based on economic indicators, many studies have been conducted using well-known statistical methods. Meanwhile, since ~2010 as the power of computers improved, new methods of machine learning began to be used. It would be interesting to know how those algorithms using a variety of mathematical and statistical methods, are able to predict the stock market. The purpose of this article is to model the monthly price of the S&P 500 index based on U.S. economic indicators using statistical, machine learning, deep learning approaches and finally compare metrics of those models. After the selection of indicators according to the data visualization, multicollinearity tests, statistical significance tests, 3 out of 27 indicators remained. The main finding of the research is that the authors improved the baseline statistical linear regression model by 19 percent using a ML Random Forest algorithm. In this way, model achieved accuracy 97.68% of prediction S&P 500 index.\",\"PeriodicalId\":46830,\"journal\":{\"name\":\"Inzinerine Ekonomika-Engineering Economics\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inzinerine Ekonomika-Engineering Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.ee.32.4.27985\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inzinerine Ekonomika-Engineering Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.5755/j01.ee.32.4.27985","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Modelling of S&P 500 Index Price Based on U.S. Economic Indicators: Machine Learning Approach
In order to forecast stock prices based on economic indicators, many studies have been conducted using well-known statistical methods. Meanwhile, since ~2010 as the power of computers improved, new methods of machine learning began to be used. It would be interesting to know how those algorithms using a variety of mathematical and statistical methods, are able to predict the stock market. The purpose of this article is to model the monthly price of the S&P 500 index based on U.S. economic indicators using statistical, machine learning, deep learning approaches and finally compare metrics of those models. After the selection of indicators according to the data visualization, multicollinearity tests, statistical significance tests, 3 out of 27 indicators remained. The main finding of the research is that the authors improved the baseline statistical linear regression model by 19 percent using a ML Random Forest algorithm. In this way, model achieved accuracy 97.68% of prediction S&P 500 index.