Tim Hempel, Mauricio J. del Razo, Christopher T. Lee, Bryn C. Taylor, Rommie E. Amaro, F. Noé
{"title":"独立马尔可夫分解:生物分子复合物动力学建模","authors":"Tim Hempel, Mauricio J. del Razo, Christopher T. Lee, Bryn C. Taylor, Rommie E. Amaro, F. Noé","doi":"10.1101/2021.03.24.436806","DOIUrl":null,"url":null,"abstract":"Significance Molecular simulations of proteins are often interpreted using Markov state models (MSMs), in which each protein configuration is assigned to a global state. As we explore larger and more complex biological systems, the size of this global state space will face a combinatorial explosion, rendering it impossible to gather sufficient sampling data. In this work, we introduce an approach to decompose a system of interest into separable subsystems. We show that MSMs built for each subsystem can be later coupled to reproduce the behaviors of the global system. To aid in the choice of decomposition we also describe a score to quantify its goodness. This decomposition strategy has the promise to enable robust modeling of complex biomolecular systems. To advance the mission of in silico cell biology, modeling the interactions of large and complex biological systems becomes increasingly relevant. The combination of molecular dynamics (MD) simulations and Markov state models (MSMs) has enabled the construction of simplified models of molecular kinetics on long timescales. Despite its success, this approach is inherently limited by the size of the molecular system. With increasing size of macromolecular complexes, the number of independent or weakly coupled subsystems increases, and the number of global system states increases exponentially, making the sampling of all distinct global states unfeasible. In this work, we present a technique called independent Markov decomposition (IMD) that leverages weak coupling between subsystems to compute a global kinetic model without requiring the sampling of all combinatorial states of subsystems. We give a theoretical basis for IMD and propose an approach for finding and validating such a decomposition. Using empirical few-state MSMs of ion channel models that are well established in electrophysiology, we demonstrate that IMD models can reproduce experimental conductance measurements with a major reduction in sampling compared with a standard MSM approach. We further show how to find the optimal partition of all-atom protein simulations into weakly coupled subunits.","PeriodicalId":20595,"journal":{"name":"Proceedings of the National Academy of Sciences","volume":"170 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Independent Markov decomposition: Toward modeling kinetics of biomolecular complexes\",\"authors\":\"Tim Hempel, Mauricio J. del Razo, Christopher T. Lee, Bryn C. Taylor, Rommie E. Amaro, F. Noé\",\"doi\":\"10.1101/2021.03.24.436806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significance Molecular simulations of proteins are often interpreted using Markov state models (MSMs), in which each protein configuration is assigned to a global state. As we explore larger and more complex biological systems, the size of this global state space will face a combinatorial explosion, rendering it impossible to gather sufficient sampling data. In this work, we introduce an approach to decompose a system of interest into separable subsystems. We show that MSMs built for each subsystem can be later coupled to reproduce the behaviors of the global system. To aid in the choice of decomposition we also describe a score to quantify its goodness. This decomposition strategy has the promise to enable robust modeling of complex biomolecular systems. To advance the mission of in silico cell biology, modeling the interactions of large and complex biological systems becomes increasingly relevant. The combination of molecular dynamics (MD) simulations and Markov state models (MSMs) has enabled the construction of simplified models of molecular kinetics on long timescales. Despite its success, this approach is inherently limited by the size of the molecular system. With increasing size of macromolecular complexes, the number of independent or weakly coupled subsystems increases, and the number of global system states increases exponentially, making the sampling of all distinct global states unfeasible. In this work, we present a technique called independent Markov decomposition (IMD) that leverages weak coupling between subsystems to compute a global kinetic model without requiring the sampling of all combinatorial states of subsystems. We give a theoretical basis for IMD and propose an approach for finding and validating such a decomposition. Using empirical few-state MSMs of ion channel models that are well established in electrophysiology, we demonstrate that IMD models can reproduce experimental conductance measurements with a major reduction in sampling compared with a standard MSM approach. We further show how to find the optimal partition of all-atom protein simulations into weakly coupled subunits.\",\"PeriodicalId\":20595,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.03.24.436806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.03.24.436806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Independent Markov decomposition: Toward modeling kinetics of biomolecular complexes
Significance Molecular simulations of proteins are often interpreted using Markov state models (MSMs), in which each protein configuration is assigned to a global state. As we explore larger and more complex biological systems, the size of this global state space will face a combinatorial explosion, rendering it impossible to gather sufficient sampling data. In this work, we introduce an approach to decompose a system of interest into separable subsystems. We show that MSMs built for each subsystem can be later coupled to reproduce the behaviors of the global system. To aid in the choice of decomposition we also describe a score to quantify its goodness. This decomposition strategy has the promise to enable robust modeling of complex biomolecular systems. To advance the mission of in silico cell biology, modeling the interactions of large and complex biological systems becomes increasingly relevant. The combination of molecular dynamics (MD) simulations and Markov state models (MSMs) has enabled the construction of simplified models of molecular kinetics on long timescales. Despite its success, this approach is inherently limited by the size of the molecular system. With increasing size of macromolecular complexes, the number of independent or weakly coupled subsystems increases, and the number of global system states increases exponentially, making the sampling of all distinct global states unfeasible. In this work, we present a technique called independent Markov decomposition (IMD) that leverages weak coupling between subsystems to compute a global kinetic model without requiring the sampling of all combinatorial states of subsystems. We give a theoretical basis for IMD and propose an approach for finding and validating such a decomposition. Using empirical few-state MSMs of ion channel models that are well established in electrophysiology, we demonstrate that IMD models can reproduce experimental conductance measurements with a major reduction in sampling compared with a standard MSM approach. We further show how to find the optimal partition of all-atom protein simulations into weakly coupled subunits.