对不同建模步骤的重要性和所花费时间的研究

M. A. Munson
{"title":"对不同建模步骤的重要性和所花费时间的研究","authors":"M. A. Munson","doi":"10.1145/2207243.2207253","DOIUrl":null,"url":null,"abstract":"Applying data mining and machine learning algorithms requires many steps to prepare data and to make use of modeling results. This study investigates two questions: (1) how time consuming are the pre- and post-processing steps? (2) how much research energy is spent on these steps? To answer these questions I surveyed practitioners about their experiences in applying modeling techniques and categorized data mining and machine learning research papers from 2009 according to the modeling step(s) they addressed. Survey results show that model building consumes only 14% of the time spent on a typical project; the remaining time is spent on pre- and post-processing steps. Both survey responses and the categorization of research papers show that data mining and machine learning researchers spend the majority of their energy on algorithms for constructing models and significantly less energy on other steps. These findings collectively suggest that there are research opportunities to simplify the steps that precede and follow model building.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"1 1","pages":"65-71"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A study on the importance of and time spent on different modeling steps\",\"authors\":\"M. A. Munson\",\"doi\":\"10.1145/2207243.2207253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying data mining and machine learning algorithms requires many steps to prepare data and to make use of modeling results. This study investigates two questions: (1) how time consuming are the pre- and post-processing steps? (2) how much research energy is spent on these steps? To answer these questions I surveyed practitioners about their experiences in applying modeling techniques and categorized data mining and machine learning research papers from 2009 according to the modeling step(s) they addressed. Survey results show that model building consumes only 14% of the time spent on a typical project; the remaining time is spent on pre- and post-processing steps. Both survey responses and the categorization of research papers show that data mining and machine learning researchers spend the majority of their energy on algorithms for constructing models and significantly less energy on other steps. These findings collectively suggest that there are research opportunities to simplify the steps that precede and follow model building.\",\"PeriodicalId\":90050,\"journal\":{\"name\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"volume\":\"1 1\",\"pages\":\"65-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2207243.2207253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2207243.2207253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

应用数据挖掘和机器学习算法需要许多步骤来准备数据和利用建模结果。本研究探讨了两个问题:(1)前处理和后处理的时间消耗如何?(2)在这些步骤上花费了多少研究精力?为了回答这些问题,我调查了从业者在应用建模技术方面的经验,并根据他们处理的建模步骤对2009年的数据挖掘和机器学习研究论文进行了分类。调查结果显示,在一个典型的项目中,模型构建只消耗14%的时间;剩下的时间用于预处理和后处理步骤。调查回应和研究论文的分类都表明,数据挖掘和机器学习研究人员将大部分精力花在构建模型的算法上,而在其他步骤上花费的精力要少得多。这些发现共同表明,有研究机会来简化之前和之后的步骤模型构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on the importance of and time spent on different modeling steps
Applying data mining and machine learning algorithms requires many steps to prepare data and to make use of modeling results. This study investigates two questions: (1) how time consuming are the pre- and post-processing steps? (2) how much research energy is spent on these steps? To answer these questions I surveyed practitioners about their experiences in applying modeling techniques and categorized data mining and machine learning research papers from 2009 according to the modeling step(s) they addressed. Survey results show that model building consumes only 14% of the time spent on a typical project; the remaining time is spent on pre- and post-processing steps. Both survey responses and the categorization of research papers show that data mining and machine learning researchers spend the majority of their energy on algorithms for constructing models and significantly less energy on other steps. These findings collectively suggest that there are research opportunities to simplify the steps that precede and follow model building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信