传热传质数学模型的点态超定反问题

IF 0.2 Q4 MATHEMATICS, APPLIED
S. Pyatkov
{"title":"传热传质数学模型的点态超定反问题","authors":"S. Pyatkov","doi":"10.14529/mmp220303","DOIUrl":null,"url":null,"abstract":"This article is a survey devoted to inverse problems of recovering sources and coefficients (parameters of a medium) in mathematical models of heat and mass transfer. The main attention is paid to well-posedness questions of the inverse problems with pointwise overdetermination conditions. The questions of this type arise in the heat and mass transfer theory, in environmental and ecology problems, when describing diffusion and filtration processes, etc. As examples, we note the problems of determining the heat conductivity tensor or sources of pollution in a water basin or atmosphere. We describe three types of problems. The first of them is the problem of recovering point or distributed sources. We present conditions for existence and uniqueness of solutions to the problem, show non-uniqueness examples, and, in model situations, give estimates on the number of measurements that allow completely identify intensities of sources and their locations. The second problem is the problem of recovering the parameters of media, in particular, the heat conductivity. The third problem is the problem of recovering the boundary regimes, i. e. the flux through a surface or the heat transfer coefficient.","PeriodicalId":44106,"journal":{"name":"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software","volume":"13 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Inverse Problems with Pointwise Overdetermination for Mathematical Models of Heat and Mass Transfer\",\"authors\":\"S. Pyatkov\",\"doi\":\"10.14529/mmp220303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is a survey devoted to inverse problems of recovering sources and coefficients (parameters of a medium) in mathematical models of heat and mass transfer. The main attention is paid to well-posedness questions of the inverse problems with pointwise overdetermination conditions. The questions of this type arise in the heat and mass transfer theory, in environmental and ecology problems, when describing diffusion and filtration processes, etc. As examples, we note the problems of determining the heat conductivity tensor or sources of pollution in a water basin or atmosphere. We describe three types of problems. The first of them is the problem of recovering point or distributed sources. We present conditions for existence and uniqueness of solutions to the problem, show non-uniqueness examples, and, in model situations, give estimates on the number of measurements that allow completely identify intensities of sources and their locations. The second problem is the problem of recovering the parameters of media, in particular, the heat conductivity. The third problem is the problem of recovering the boundary regimes, i. e. the flux through a surface or the heat transfer coefficient.\",\"PeriodicalId\":44106,\"journal\":{\"name\":\"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/mmp220303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/mmp220303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文是一篇关于在传热传质数学模型中恢复源和系数(介质参数)的反问题的综述。主要研究了带点超定条件的逆问题的适定性问题。这类问题出现在传热传质理论、环境和生态问题、描述扩散和过滤过程等方面。作为例子,我们注意到确定流域或大气中的导热张量或污染源的问题。我们描述三种类型的问题。首先是恢复点或分布式源的问题。我们给出了问题解的存在性和唯一性的条件,展示了非唯一性的例子,并且,在模型情况下,给出了可以完全识别源强度及其位置的测量次数的估计。第二个问题是恢复介质的参数,特别是热导率的问题。第三个问题是恢复边界状态的问题,即通过表面的通量或传热系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Inverse Problems with Pointwise Overdetermination for Mathematical Models of Heat and Mass Transfer
This article is a survey devoted to inverse problems of recovering sources and coefficients (parameters of a medium) in mathematical models of heat and mass transfer. The main attention is paid to well-posedness questions of the inverse problems with pointwise overdetermination conditions. The questions of this type arise in the heat and mass transfer theory, in environmental and ecology problems, when describing diffusion and filtration processes, etc. As examples, we note the problems of determining the heat conductivity tensor or sources of pollution in a water basin or atmosphere. We describe three types of problems. The first of them is the problem of recovering point or distributed sources. We present conditions for existence and uniqueness of solutions to the problem, show non-uniqueness examples, and, in model situations, give estimates on the number of measurements that allow completely identify intensities of sources and their locations. The second problem is the problem of recovering the parameters of media, in particular, the heat conductivity. The third problem is the problem of recovering the boundary regimes, i. e. the flux through a surface or the heat transfer coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
50.00%
发文量
1
期刊介绍: Series «Mathematical Modelling, Programming & Computer Software» of the South Ural State University Bulletin was created in 2008. Nowadays it is published four times a year. The basic goal of the editorial board as well as the editorial commission of series «Mathematical Modelling, Programming & Computer Software» is research promotion in the sphere of mathematical modelling in natural, engineering and economic science. Priority publication right is given to: -the results of high-quality research of mathematical models, revealing less obvious properties; -the results of computational research, containing designs of new computational algorithms relating to mathematical models; -program systems, designed for computational experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信