{"title":"黎曼模型拟线性椭圆方程稳定解的正则性","authors":"'O JoaoMarcosdo, R. Clemente","doi":"10.5186/AASFM.2019.4448","DOIUrl":null,"url":null,"abstract":"We investigate the regularity of semi-stable, radially symmetric, and decreasing solutions for a class of quasilinear reaction-diffusion equations in the inhomogeneous context of Riemannian manifolds. We prove uniform boundedness, Lebesgue and Sobolev estimates for this class of solutions for equations involving the p-Laplace Beltrami operator and locally Lipschitz non-linearity. We emphasize that our results do not depend on the boundary conditions and the specific form of the non-linearities and metric. Moreover, as an application, we establish regularity of the extremal solutions for equations involving the p-Laplace Beltrami operator with zero Dirichlet boundary conditions.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of stable solutions to quasilinear elliptic equations on Riemannian models\",\"authors\":\"'O JoaoMarcosdo, R. Clemente\",\"doi\":\"10.5186/AASFM.2019.4448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the regularity of semi-stable, radially symmetric, and decreasing solutions for a class of quasilinear reaction-diffusion equations in the inhomogeneous context of Riemannian manifolds. We prove uniform boundedness, Lebesgue and Sobolev estimates for this class of solutions for equations involving the p-Laplace Beltrami operator and locally Lipschitz non-linearity. We emphasize that our results do not depend on the boundary conditions and the specific form of the non-linearities and metric. Moreover, as an application, we establish regularity of the extremal solutions for equations involving the p-Laplace Beltrami operator with zero Dirichlet boundary conditions.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4448\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4448","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Regularity of stable solutions to quasilinear elliptic equations on Riemannian models
We investigate the regularity of semi-stable, radially symmetric, and decreasing solutions for a class of quasilinear reaction-diffusion equations in the inhomogeneous context of Riemannian manifolds. We prove uniform boundedness, Lebesgue and Sobolev estimates for this class of solutions for equations involving the p-Laplace Beltrami operator and locally Lipschitz non-linearity. We emphasize that our results do not depend on the boundary conditions and the specific form of the non-linearities and metric. Moreover, as an application, we establish regularity of the extremal solutions for equations involving the p-Laplace Beltrami operator with zero Dirichlet boundary conditions.
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.