{"title":"非线性驻波的大尺度不稳定性","authors":"P. Coullet, S. Fauve, E. Tirapegui","doi":"10.1051/JPHYSLET:019850046017078700","DOIUrl":null,"url":null,"abstract":"We present the nonlinear phase equations describing the stability of a time-periodic one-dimensional spatial pattern, that arises in a system which is invariant by space and time translations and space reflection symmetry. We show that a large scale oscillatory instability can occur, leading to a quasiperiodic temporal regime with two different spatial scales On etablit les equations aux derivees partielles non lineaires qui gouvernent la stabilite a grande echelle d'une structure cellulaire unidimensionnelle oscillante, apparaissant dans un systeme hors equilibre, invariant par translations d'espace et de temps, et par reflexion d'espace. Existence d'une instabilite oscillatoire, conduisant a un regime quasi periodique, possedant deux echelles spatiales distinctes","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"118 1","pages":"787-791"},"PeriodicalIF":0.0000,"publicationDate":"1985-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Large scale instability of nonlinear standing waves\",\"authors\":\"P. Coullet, S. Fauve, E. Tirapegui\",\"doi\":\"10.1051/JPHYSLET:019850046017078700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the nonlinear phase equations describing the stability of a time-periodic one-dimensional spatial pattern, that arises in a system which is invariant by space and time translations and space reflection symmetry. We show that a large scale oscillatory instability can occur, leading to a quasiperiodic temporal regime with two different spatial scales On etablit les equations aux derivees partielles non lineaires qui gouvernent la stabilite a grande echelle d'une structure cellulaire unidimensionnelle oscillante, apparaissant dans un systeme hors equilibre, invariant par translations d'espace et de temps, et par reflexion d'espace. Existence d'une instabilite oscillatoire, conduisant a un regime quasi periodique, possedant deux echelles spatiales distinctes\",\"PeriodicalId\":14822,\"journal\":{\"name\":\"Journal De Physique Lettres\",\"volume\":\"118 1\",\"pages\":\"787-791\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Lettres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYSLET:019850046017078700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046017078700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large scale instability of nonlinear standing waves
We present the nonlinear phase equations describing the stability of a time-periodic one-dimensional spatial pattern, that arises in a system which is invariant by space and time translations and space reflection symmetry. We show that a large scale oscillatory instability can occur, leading to a quasiperiodic temporal regime with two different spatial scales On etablit les equations aux derivees partielles non lineaires qui gouvernent la stabilite a grande echelle d'une structure cellulaire unidimensionnelle oscillante, apparaissant dans un systeme hors equilibre, invariant par translations d'espace et de temps, et par reflexion d'espace. Existence d'une instabilite oscillatoire, conduisant a un regime quasi periodique, possedant deux echelles spatiales distinctes