{"title":"基于多数投票和特征选择的网络入侵检测系统","authors":"D. Patil, T. Pattewar","doi":"10.4108/eai.4-4-2022.173780","DOIUrl":null,"url":null,"abstract":"Attackers continually foster new endeavours and attack strategies meant to keep away from safeguards. Many attacks have an effect on other malware or social engineering to collect consumer credentials that grant them get access to network and data. A network intrusion detection system (NIDS) is essential for network safety because it empowers to understand and react to malicious traffic. In this paper, we propose a feature selection and majority voting based solutions for detecting intrusions. A multi-model intrusion detection system is designed using Majority Voting approach. Our proposed approach was tested on a NSL-KDD benchmark dataset. The experimental results show that models based on Majority Voting and Chi-square features selection method achieved the best accuracy of 99.50% with error-rate of 0.501%, FPR of 0.005 and FNR of 0.005 using only 14 features.","PeriodicalId":43034,"journal":{"name":"EAI Endorsed Transactions on Scalable Information Systems","volume":"28 1","pages":"e6"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Majority Voting and Feature Selection Based Network Intrusion Detection System\",\"authors\":\"D. Patil, T. Pattewar\",\"doi\":\"10.4108/eai.4-4-2022.173780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attackers continually foster new endeavours and attack strategies meant to keep away from safeguards. Many attacks have an effect on other malware or social engineering to collect consumer credentials that grant them get access to network and data. A network intrusion detection system (NIDS) is essential for network safety because it empowers to understand and react to malicious traffic. In this paper, we propose a feature selection and majority voting based solutions for detecting intrusions. A multi-model intrusion detection system is designed using Majority Voting approach. Our proposed approach was tested on a NSL-KDD benchmark dataset. The experimental results show that models based on Majority Voting and Chi-square features selection method achieved the best accuracy of 99.50% with error-rate of 0.501%, FPR of 0.005 and FNR of 0.005 using only 14 features.\",\"PeriodicalId\":43034,\"journal\":{\"name\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"volume\":\"28 1\",\"pages\":\"e6\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.4-4-2022.173780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.4-4-2022.173780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Majority Voting and Feature Selection Based Network Intrusion Detection System
Attackers continually foster new endeavours and attack strategies meant to keep away from safeguards. Many attacks have an effect on other malware or social engineering to collect consumer credentials that grant them get access to network and data. A network intrusion detection system (NIDS) is essential for network safety because it empowers to understand and react to malicious traffic. In this paper, we propose a feature selection and majority voting based solutions for detecting intrusions. A multi-model intrusion detection system is designed using Majority Voting approach. Our proposed approach was tested on a NSL-KDD benchmark dataset. The experimental results show that models based on Majority Voting and Chi-square features selection method achieved the best accuracy of 99.50% with error-rate of 0.501%, FPR of 0.005 and FNR of 0.005 using only 14 features.