非线性分数阶微分系统的周期解

S. Abbas, M. Benchohra, S. Bouriah, J. Nieto
{"title":"非线性分数阶微分系统的周期解","authors":"S. Abbas, M. Benchohra, S. Bouriah, J. Nieto","doi":"10.7153/DEA-2018-10-21","DOIUrl":null,"url":null,"abstract":"In this paper, we establish some existence and uniqueness results for periodic solutions for a class of fractional differential equations with the Caputo fractional derivative. The arguments are based upon the Banach contraction principle, and Schaefer’s fixed point theorem.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"52 1","pages":"299-316"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Periodic solutions for nonlinear fractional differential systems\",\"authors\":\"S. Abbas, M. Benchohra, S. Bouriah, J. Nieto\",\"doi\":\"10.7153/DEA-2018-10-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish some existence and uniqueness results for periodic solutions for a class of fractional differential equations with the Caputo fractional derivative. The arguments are based upon the Banach contraction principle, and Schaefer’s fixed point theorem.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"52 1\",\"pages\":\"299-316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2018-10-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2018-10-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文建立了一类具有Caputo分数阶导数的分数阶微分方程周期解的存在唯一性结果。这些论点是基于巴拿赫收缩原理和舍费尔不动点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic solutions for nonlinear fractional differential systems
In this paper, we establish some existence and uniqueness results for periodic solutions for a class of fractional differential equations with the Caputo fractional derivative. The arguments are based upon the Banach contraction principle, and Schaefer’s fixed point theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信