{"title":"纯连续能谱系统的相干态","authors":"Z. Mouayn, H. A. Yamani","doi":"10.1063/5.0030759","DOIUrl":null,"url":null,"abstract":"While dealing with a Hamiltonian with continuous spectrum we use a tridiagonal method involving orthogonal polynomials to construct a set of coherent states obeying a Glauber-type condition. We perform a Bayesian decomposition of the weight function of the orthogonality measure to show that the obtained coherent states can be recast in the Gazeau-Klauder approach. The Hamiltonian of the $\\ell$-wave free particle is treated as an example to illustrate the method.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coherent states of systems with pure continuous energy spectra\",\"authors\":\"Z. Mouayn, H. A. Yamani\",\"doi\":\"10.1063/5.0030759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While dealing with a Hamiltonian with continuous spectrum we use a tridiagonal method involving orthogonal polynomials to construct a set of coherent states obeying a Glauber-type condition. We perform a Bayesian decomposition of the weight function of the orthogonality measure to show that the obtained coherent states can be recast in the Gazeau-Klauder approach. The Hamiltonian of the $\\\\ell$-wave free particle is treated as an example to illustrate the method.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0030759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0030759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coherent states of systems with pure continuous energy spectra
While dealing with a Hamiltonian with continuous spectrum we use a tridiagonal method involving orthogonal polynomials to construct a set of coherent states obeying a Glauber-type condition. We perform a Bayesian decomposition of the weight function of the orthogonality measure to show that the obtained coherent states can be recast in the Gazeau-Klauder approach. The Hamiltonian of the $\ell$-wave free particle is treated as an example to illustrate the method.