一类动态过程的自改进q学习控制器

IF 1.1 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
J. Musial, K. Stebel, Jacek Czeczot
{"title":"一类动态过程的自改进q学习控制器","authors":"J. Musial, K. Stebel, Jacek Czeczot","doi":"10.24425/acs.2021.138691","DOIUrl":null,"url":null,"abstract":"This paper presents how Q-learning algorithm can be applied as a general-purpose selfimproving controller for use in industrial automation as a substitute for conventional PI controller implemented without proper tuning. Traditional Q-learning approach is redefined to better fit the applications in practical control loops, including new definition of the goal state by the closed loop reference trajectory and discretization of state space and accessible actions (manipulating variables). Properties of Q-learning algorithm are investigated in terms of practical applicability with a special emphasis on initializing of Q-matrix based only on preliminary PI tunings to ensure bumpless switching between existing controller and replacing Q-learning algorithm. A general approach for design of Q-matrix and learning policy is suggested and the concept is systematically validated by simulation in the application to control two examples of processes exhibiting first order dynamics and oscillatory second order dynamics. Results show that online learning using interaction with controlled process is possible and it ensures significant improvement in control performance compared to arbitrarily tuned PI controller.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"80 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-improving Q-learning based controller for a class of dynamical processes\",\"authors\":\"J. Musial, K. Stebel, Jacek Czeczot\",\"doi\":\"10.24425/acs.2021.138691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents how Q-learning algorithm can be applied as a general-purpose selfimproving controller for use in industrial automation as a substitute for conventional PI controller implemented without proper tuning. Traditional Q-learning approach is redefined to better fit the applications in practical control loops, including new definition of the goal state by the closed loop reference trajectory and discretization of state space and accessible actions (manipulating variables). Properties of Q-learning algorithm are investigated in terms of practical applicability with a special emphasis on initializing of Q-matrix based only on preliminary PI tunings to ensure bumpless switching between existing controller and replacing Q-learning algorithm. A general approach for design of Q-matrix and learning policy is suggested and the concept is systematically validated by simulation in the application to control two examples of processes exhibiting first order dynamics and oscillatory second order dynamics. Results show that online learning using interaction with controlled process is possible and it ensures significant improvement in control performance compared to arbitrarily tuned PI controller.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24425/acs.2021.138691\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2021.138691","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了如何将q -学习算法作为一种通用的自改进控制器应用于工业自动化中,作为传统PI控制器的替代,该控制器没有适当的调谐。重新定义了传统的q -学习方法,以更好地适应实际控制回路中的应用,包括通过闭环参考轨迹重新定义目标状态,并将状态空间和可访问动作(操纵变量)离散化。从实际应用的角度研究了q -学习算法的性质,特别强调了仅基于初始PI整定来初始化q矩阵,以确保在现有控制器和替换q -学习算法之间无颠簸切换。提出了一种设计q矩阵和学习策略的一般方法,并通过对两个一阶动态和振荡二阶动态过程的控制实例进行了系统的仿真验证。结果表明,使用与被控过程交互的在线学习是可能的,并且与任意调谐的PI控制器相比,它确保了控制性能的显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-improving Q-learning based controller for a class of dynamical processes
This paper presents how Q-learning algorithm can be applied as a general-purpose selfimproving controller for use in industrial automation as a substitute for conventional PI controller implemented without proper tuning. Traditional Q-learning approach is redefined to better fit the applications in practical control loops, including new definition of the goal state by the closed loop reference trajectory and discretization of state space and accessible actions (manipulating variables). Properties of Q-learning algorithm are investigated in terms of practical applicability with a special emphasis on initializing of Q-matrix based only on preliminary PI tunings to ensure bumpless switching between existing controller and replacing Q-learning algorithm. A general approach for design of Q-matrix and learning policy is suggested and the concept is systematically validated by simulation in the application to control two examples of processes exhibiting first order dynamics and oscillatory second order dynamics. Results show that online learning using interaction with controlled process is possible and it ensures significant improvement in control performance compared to arbitrarily tuned PI controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Control Sciences
Archives of Control Sciences Mathematics-Modeling and Simulation
CiteScore
2.40
自引率
33.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信