局部实数Gromov-Witten不变量的分裂公式

Pub Date : 2020-05-12 DOI:10.4310/jsg.2022.v20.n3.a2
Penka V. Georgieva, Eleny-Nicoleta Ionel
{"title":"局部实数Gromov-Witten不变量的分裂公式","authors":"Penka V. Georgieva, Eleny-Nicoleta Ionel","doi":"10.4310/jsg.2022.v20.n3.a2","DOIUrl":null,"url":null,"abstract":"Motivated by the real version of the Gopakumar-Vafa conjecture for 3-folds, the authors introduced in [GI] the notion of local real Gromov-Witten invariants. This article is devoted to the proof of a splitting formula for these invariants under target degenerations. It is used in [GI] to show that the invariants give rise to a 2-dimensional Klein TQFT and to prove the local version of the real Gopakumar-Vafa conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Splitting formulas for the local real Gromov–Witten invariants\",\"authors\":\"Penka V. Georgieva, Eleny-Nicoleta Ionel\",\"doi\":\"10.4310/jsg.2022.v20.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the real version of the Gopakumar-Vafa conjecture for 3-folds, the authors introduced in [GI] the notion of local real Gromov-Witten invariants. This article is devoted to the proof of a splitting formula for these invariants under target degenerations. It is used in [GI] to show that the invariants give rise to a 2-dimensional Klein TQFT and to prove the local version of the real Gopakumar-Vafa conjecture.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n3.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n3.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

受3-fold的Gopakumar-Vafa猜想的实版本的启发,作者在[GI]中引入了局部实Gromov-Witten不变量的概念。本文致力于证明这些不变量在目标退化下的分裂公式。在[GI]中使用它来证明不变量产生二维Klein TQFT,并证明实Gopakumar-Vafa猜想的局部版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Splitting formulas for the local real Gromov–Witten invariants
Motivated by the real version of the Gopakumar-Vafa conjecture for 3-folds, the authors introduced in [GI] the notion of local real Gromov-Witten invariants. This article is devoted to the proof of a splitting formula for these invariants under target degenerations. It is used in [GI] to show that the invariants give rise to a 2-dimensional Klein TQFT and to prove the local version of the real Gopakumar-Vafa conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信