{"title":"局部实数Gromov-Witten不变量的分裂公式","authors":"Penka V. Georgieva, Eleny-Nicoleta Ionel","doi":"10.4310/jsg.2022.v20.n3.a2","DOIUrl":null,"url":null,"abstract":"Motivated by the real version of the Gopakumar-Vafa conjecture for 3-folds, the authors introduced in [GI] the notion of local real Gromov-Witten invariants. This article is devoted to the proof of a splitting formula for these invariants under target degenerations. It is used in [GI] to show that the invariants give rise to a 2-dimensional Klein TQFT and to prove the local version of the real Gopakumar-Vafa conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Splitting formulas for the local real Gromov–Witten invariants\",\"authors\":\"Penka V. Georgieva, Eleny-Nicoleta Ionel\",\"doi\":\"10.4310/jsg.2022.v20.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the real version of the Gopakumar-Vafa conjecture for 3-folds, the authors introduced in [GI] the notion of local real Gromov-Witten invariants. This article is devoted to the proof of a splitting formula for these invariants under target degenerations. It is used in [GI] to show that the invariants give rise to a 2-dimensional Klein TQFT and to prove the local version of the real Gopakumar-Vafa conjecture.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n3.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n3.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Splitting formulas for the local real Gromov–Witten invariants
Motivated by the real version of the Gopakumar-Vafa conjecture for 3-folds, the authors introduced in [GI] the notion of local real Gromov-Witten invariants. This article is devoted to the proof of a splitting formula for these invariants under target degenerations. It is used in [GI] to show that the invariants give rise to a 2-dimensional Klein TQFT and to prove the local version of the real Gopakumar-Vafa conjecture.