在与环相关的余零因子图上

IF 1 4区 数学 Q1 MATHEMATICS
Praveen Mathil, Barkha Baloda, J. Kumar
{"title":"在与环相关的余零因子图上","authors":"Praveen Mathil, Barkha Baloda, J. Kumar","doi":"10.1080/09728600.2022.2111241","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring with unity. The cozero-divisor graph of a ring $R$, denoted by $\\Gamma'(R)$, is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of $R$, and two distinct vertices $x$ and $y$ are adjacent if and only if $x \\notin Ry$ and $y \\notin Rx$. In this paper, first we study the Laplacian spectrum of $\\Gamma'(\\mathbb{Z}_n)$. We show that the graph $\\Gamma'(\\mathbb{Z}_{pq})$ is Laplacian integral. Further, we obtain the Laplacian spectrum of $\\Gamma'(\\mathbb{Z}_n)$ for $n = p^{n_1}q^{n_2}$, where $n_1, n_2 \\in \\mathbb{N}$ and $p, q$ are distinct primes. In order to study the Laplacian spectral radius and algebraic connectivity of $\\Gamma'(\\mathbb{Z}_n)$, we characterized the values of $n$ for which the Laplacian spectral radius is equal to the order of $\\Gamma'(\\mathbb{Z}_n)$. Moreover, the values of $n$ for which the algebraic connectivity and vertex connectivity of $\\Gamma'(\\mathbb{Z}_n)$ coincide are also described. At the final part of this paper, we obtain the Wiener index of $\\Gamma'(\\mathbb{Z}_n)$ for arbitrary $n$.","PeriodicalId":48497,"journal":{"name":"AKCE International Journal of Graphs and Combinatorics","volume":"1 1","pages":"238-248"},"PeriodicalIF":1.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the cozero-divisor graphs associated to rings\",\"authors\":\"Praveen Mathil, Barkha Baloda, J. Kumar\",\"doi\":\"10.1080/09728600.2022.2111241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring with unity. The cozero-divisor graph of a ring $R$, denoted by $\\\\Gamma'(R)$, is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of $R$, and two distinct vertices $x$ and $y$ are adjacent if and only if $x \\\\notin Ry$ and $y \\\\notin Rx$. In this paper, first we study the Laplacian spectrum of $\\\\Gamma'(\\\\mathbb{Z}_n)$. We show that the graph $\\\\Gamma'(\\\\mathbb{Z}_{pq})$ is Laplacian integral. Further, we obtain the Laplacian spectrum of $\\\\Gamma'(\\\\mathbb{Z}_n)$ for $n = p^{n_1}q^{n_2}$, where $n_1, n_2 \\\\in \\\\mathbb{N}$ and $p, q$ are distinct primes. In order to study the Laplacian spectral radius and algebraic connectivity of $\\\\Gamma'(\\\\mathbb{Z}_n)$, we characterized the values of $n$ for which the Laplacian spectral radius is equal to the order of $\\\\Gamma'(\\\\mathbb{Z}_n)$. Moreover, the values of $n$ for which the algebraic connectivity and vertex connectivity of $\\\\Gamma'(\\\\mathbb{Z}_n)$ coincide are also described. At the final part of this paper, we obtain the Wiener index of $\\\\Gamma'(\\\\mathbb{Z}_n)$ for arbitrary $n$.\",\"PeriodicalId\":48497,\"journal\":{\"name\":\"AKCE International Journal of Graphs and Combinatorics\",\"volume\":\"1 1\",\"pages\":\"238-248\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AKCE International Journal of Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/09728600.2022.2111241\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AKCE International Journal of Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/09728600.2022.2111241","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设$R$是一个统一的环。用$\Gamma'(R)$表示的环$R$的上零因子图是一个无向简单图,其顶点是$R$的所有非零和非单位元素的集合,并且两个不同的顶点$x$和$y$相邻当且仅当$x \notin Ry$和$y \notin Rx$。本文首先研究了$\Gamma'(\mathbb{Z}_n)$的拉普拉斯谱。我们证明了图$\Gamma'(\mathbb{Z}_{pq})$是拉普拉斯积分。进一步,我们得到了$\Gamma'(\mathbb{Z}_n)$对于$n = p^{n_1}q^{n_2}$的拉普拉斯谱,其中$ mathbb{n}$中的$n_1, n_2 \和$p, q$是不同素数。为了研究$\Gamma′(\mathbb{Z}_n)$的拉普拉斯谱半径和代数连通性,我们刻画了$n$的拉普拉斯谱半径等于$\Gamma′(\mathbb{Z}_n)$阶的值。此外,还描述了$\Gamma'(\mathbb{Z}_n)$的代数连通性与顶点连通性重合的$n$的值。在本文的最后部分,我们得到了任意$n$的$\Gamma'(\mathbb{Z}_n)$的Wiener索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the cozero-divisor graphs associated to rings
Let $R$ be a ring with unity. The cozero-divisor graph of a ring $R$, denoted by $\Gamma'(R)$, is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of $R$, and two distinct vertices $x$ and $y$ are adjacent if and only if $x \notin Ry$ and $y \notin Rx$. In this paper, first we study the Laplacian spectrum of $\Gamma'(\mathbb{Z}_n)$. We show that the graph $\Gamma'(\mathbb{Z}_{pq})$ is Laplacian integral. Further, we obtain the Laplacian spectrum of $\Gamma'(\mathbb{Z}_n)$ for $n = p^{n_1}q^{n_2}$, where $n_1, n_2 \in \mathbb{N}$ and $p, q$ are distinct primes. In order to study the Laplacian spectral radius and algebraic connectivity of $\Gamma'(\mathbb{Z}_n)$, we characterized the values of $n$ for which the Laplacian spectral radius is equal to the order of $\Gamma'(\mathbb{Z}_n)$. Moreover, the values of $n$ for which the algebraic connectivity and vertex connectivity of $\Gamma'(\mathbb{Z}_n)$ coincide are also described. At the final part of this paper, we obtain the Wiener index of $\Gamma'(\mathbb{Z}_n)$ for arbitrary $n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
40
审稿时长
28 weeks
期刊介绍: AKCE International Journal of Graphs and Combinatorics is devoted to publication of standard original research papers in Combinatorial Mathematics and related areas. The fields covered by the journal include: Graphs and hypergraphs, Network theory, Combinatorial optimization, Coding theory, Block designs, Combinatorial geometry, Matroid theory, Logic, Computing, Neural networks and any related topics. Each volume will consist of three issues to be published in the months of April, August and December every year. Contribution presented to the journal can be Full-length article, Review article, Short communication and about a conference. The journal will also publish proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standard of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信