A. Hamanaka, F. Su, K. Itakura, Kazuhiro Takahashi, K. Satoh, J. Kodama, G. Deguchi
{"title":"紧凑型煤地下气化系统燃烧/气化区域控制","authors":"A. Hamanaka, F. Su, K. Itakura, Kazuhiro Takahashi, K. Satoh, J. Kodama, G. Deguchi","doi":"10.2473/JOURNALOFMMIJ.134.81","DOIUrl":null,"url":null,"abstract":"limited around a well. In order to develop co-axial UCG system with high efficiency, the model UCG experiment with a large-scale simulated coal seam were conducted. It has been shown that 1) the gasification period can be extended by adopting proper oxygen inflow, 2) it is possible to control the combustion/gasification area and the product gas quality by controlling the position of oxygen inflow, 3) acoustic emission monitoring is an effective technique to evaluate the combustion/gasification area.","PeriodicalId":16502,"journal":{"name":"Journal of Mmij","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of Combustion/Gasification Area with Compact Underground Coal Gasification System\",\"authors\":\"A. Hamanaka, F. Su, K. Itakura, Kazuhiro Takahashi, K. Satoh, J. Kodama, G. Deguchi\",\"doi\":\"10.2473/JOURNALOFMMIJ.134.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"limited around a well. In order to develop co-axial UCG system with high efficiency, the model UCG experiment with a large-scale simulated coal seam were conducted. It has been shown that 1) the gasification period can be extended by adopting proper oxygen inflow, 2) it is possible to control the combustion/gasification area and the product gas quality by controlling the position of oxygen inflow, 3) acoustic emission monitoring is an effective technique to evaluate the combustion/gasification area.\",\"PeriodicalId\":16502,\"journal\":{\"name\":\"Journal of Mmij\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mmij\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2473/JOURNALOFMMIJ.134.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mmij","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2473/JOURNALOFMMIJ.134.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of Combustion/Gasification Area with Compact Underground Coal Gasification System
limited around a well. In order to develop co-axial UCG system with high efficiency, the model UCG experiment with a large-scale simulated coal seam were conducted. It has been shown that 1) the gasification period can be extended by adopting proper oxygen inflow, 2) it is possible to control the combustion/gasification area and the product gas quality by controlling the position of oxygen inflow, 3) acoustic emission monitoring is an effective technique to evaluate the combustion/gasification area.