基于主成分谱分析和复杂地震属性的岩性分组趋势聚类分析

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES
Isfan Isfan, A. Harsono, A. Haris
{"title":"基于主成分谱分析和复杂地震属性的岩性分组趋势聚类分析","authors":"Isfan Isfan, A. Harsono, A. Haris","doi":"10.7454/MSS.V25I1.1227","DOIUrl":null,"url":null,"abstract":"Cluster analysis is used to determine possible lithology groupings on the basis of information from seismic data. Specifically, k-means is used in the cluster analysis of different lithologies. The data center is determined randomly and updated through an iterative process (unsupervised). The cluster analysis process involves combinations of complex seismic attributes and spectral decomposition as inputs. The complex seismic attributes are reflection strength and cosine phase. Reflection strength clearly describes the lithology boundary while the cosine phase describes the lithologies. Spectral decomposition is used to detect the presence of channels. The resolution of seismic data generally reaches 90 Hz. Spectral decomposition can produce outputs with up to 1 Hz intervals. The spectral components are correlated and repeated. To reduce the repetition of spectral data and increase the trend within the data, we use principal component spectral analysis. We apply and validate the workflow using the seismic data volume acquired over Boonsville, Texas, USA. The results of the cluster analysis method show good consistency with existing lithological maps interpreted from well data correlations.","PeriodicalId":18042,"journal":{"name":"Makara Journal of Science","volume":"26 1","pages":"4"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cluster Analysis of Lithology Grouping Trends using Principal Component Spectral Analysis and Complex Seismic Attributes\",\"authors\":\"Isfan Isfan, A. Harsono, A. Haris\",\"doi\":\"10.7454/MSS.V25I1.1227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster analysis is used to determine possible lithology groupings on the basis of information from seismic data. Specifically, k-means is used in the cluster analysis of different lithologies. The data center is determined randomly and updated through an iterative process (unsupervised). The cluster analysis process involves combinations of complex seismic attributes and spectral decomposition as inputs. The complex seismic attributes are reflection strength and cosine phase. Reflection strength clearly describes the lithology boundary while the cosine phase describes the lithologies. Spectral decomposition is used to detect the presence of channels. The resolution of seismic data generally reaches 90 Hz. Spectral decomposition can produce outputs with up to 1 Hz intervals. The spectral components are correlated and repeated. To reduce the repetition of spectral data and increase the trend within the data, we use principal component spectral analysis. We apply and validate the workflow using the seismic data volume acquired over Boonsville, Texas, USA. The results of the cluster analysis method show good consistency with existing lithological maps interpreted from well data correlations.\",\"PeriodicalId\":18042,\"journal\":{\"name\":\"Makara Journal of Science\",\"volume\":\"26 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Makara Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7454/MSS.V25I1.1227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/MSS.V25I1.1227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

聚类分析用于根据地震资料的信息确定可能的岩性分组。具体来说,k-means用于不同岩性的聚类分析。数据中心是随机确定的,并通过迭代过程(无监督)进行更新。聚类分析过程涉及到复杂地震属性的组合和频谱分解作为输入。复杂的地震属性是反射强度和余弦相位。反射强度清晰地描述了岩性边界,余弦相位描述了岩性。光谱分解用于检测信道的存在。地震资料的分辨率一般达到90hz。频谱分解可以产生高达1hz间隔的输出。光谱成分是相互关联和重复的。为了减少光谱数据的重复,增加数据内部的趋势,我们使用了主成分光谱分析。我们使用在美国德克萨斯州Boonsville获得的地震数据量应用并验证了该工作流。聚类分析方法的结果与根据井资料相关性解释的现有岩性图具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster Analysis of Lithology Grouping Trends using Principal Component Spectral Analysis and Complex Seismic Attributes
Cluster analysis is used to determine possible lithology groupings on the basis of information from seismic data. Specifically, k-means is used in the cluster analysis of different lithologies. The data center is determined randomly and updated through an iterative process (unsupervised). The cluster analysis process involves combinations of complex seismic attributes and spectral decomposition as inputs. The complex seismic attributes are reflection strength and cosine phase. Reflection strength clearly describes the lithology boundary while the cosine phase describes the lithologies. Spectral decomposition is used to detect the presence of channels. The resolution of seismic data generally reaches 90 Hz. Spectral decomposition can produce outputs with up to 1 Hz intervals. The spectral components are correlated and repeated. To reduce the repetition of spectral data and increase the trend within the data, we use principal component spectral analysis. We apply and validate the workflow using the seismic data volume acquired over Boonsville, Texas, USA. The results of the cluster analysis method show good consistency with existing lithological maps interpreted from well data correlations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Makara Journal of Science
Makara Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.30
自引率
20.00%
发文量
24
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信