具有Holling IV型函数响应的捕食-食饵系统的全局稳定性和周期性

Hongwei Zhao
{"title":"具有Holling IV型函数响应的捕食-食饵系统的全局稳定性和周期性","authors":"Hongwei Zhao","doi":"10.1109/ICIC.2011.68","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the persistence of a class of predator-prey system with double density restrict and Holling IV type functional response, the existence and the global stability of its global positive periodic solution by using Comparability Theorem, Coincidence Degree Theory and Lyapunov functions. We obtain the sufficient conditions which guarantee the existence of the global asymptotic stable positive periodic solution of the periodic system. Some new results obtained.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Stability and Periodicity of Predator-Prey System with Holling IV Type Functional Response\",\"authors\":\"Hongwei Zhao\",\"doi\":\"10.1109/ICIC.2011.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the persistence of a class of predator-prey system with double density restrict and Holling IV type functional response, the existence and the global stability of its global positive periodic solution by using Comparability Theorem, Coincidence Degree Theory and Lyapunov functions. We obtain the sufficient conditions which guarantee the existence of the global asymptotic stable positive periodic solution of the periodic system. Some new results obtained.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用可比性定理、重合度理论和Lyapunov函数,研究了一类具有双密度限制和Holling IV型泛函响应的捕食-食饵系统的持续性,以及其全局正周期解的存在性和全局稳定性。得到了该周期系统全局渐近稳定正周期解存在的充分条件。获得了一些新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Stability and Periodicity of Predator-Prey System with Holling IV Type Functional Response
In this paper, we investigate the persistence of a class of predator-prey system with double density restrict and Holling IV type functional response, the existence and the global stability of its global positive periodic solution by using Comparability Theorem, Coincidence Degree Theory and Lyapunov functions. We obtain the sufficient conditions which guarantee the existence of the global asymptotic stable positive periodic solution of the periodic system. Some new results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信