利用深度学习检测肺炎

IF 0.3
Nishant Borkar, Atharva Zararia, Riddhi Gangbhoj, Prashant Kumar, Vaishnavi Bhaiyya
{"title":"利用深度学习检测肺炎","authors":"Nishant Borkar, Atharva Zararia, Riddhi Gangbhoj, Prashant Kumar, Vaishnavi Bhaiyya","doi":"10.47164/ijngc.v14i1.1023","DOIUrl":null,"url":null,"abstract":"The main idea of the research paper is to detect pneumonia from the patient’s chest x- rays. Pneumonia is the infection that causes inflammation of the air sacs in one or both the lungs. The air sacs are filled with purulent material (pus) causing breath shortness, cough, fever, chills.A variety of bacteria, viruses, and fungi can cause pneumonia. In this paper, we used machine learning algorithms to process x-ray images to determine whether or not the patient has pneumonia. This Experiment focusses on the use of deep learning algorithms with VGG16 pre-processing, keras and adams in order to build a model with high accuracy.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"33 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Pneumonia Using Deep Learning\",\"authors\":\"Nishant Borkar, Atharva Zararia, Riddhi Gangbhoj, Prashant Kumar, Vaishnavi Bhaiyya\",\"doi\":\"10.47164/ijngc.v14i1.1023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main idea of the research paper is to detect pneumonia from the patient’s chest x- rays. Pneumonia is the infection that causes inflammation of the air sacs in one or both the lungs. The air sacs are filled with purulent material (pus) causing breath shortness, cough, fever, chills.A variety of bacteria, viruses, and fungi can cause pneumonia. In this paper, we used machine learning algorithms to process x-ray images to determine whether or not the patient has pneumonia. This Experiment focusses on the use of deep learning algorithms with VGG16 pre-processing, keras and adams in order to build a model with high accuracy.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i1.1023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究论文的主要思想是通过病人的胸部x光来检测肺炎。肺炎是一种引起单肺或双肺气囊发炎的感染。气囊充满脓性物质(脓液),导致呼吸急促、咳嗽、发烧、发冷。多种细菌、病毒和真菌可引起肺炎。在本文中,我们使用机器学习算法来处理x射线图像以确定患者是否患有肺炎。本实验主要利用VGG16预处理、keras和adams等深度学习算法来构建高精度的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Pneumonia Using Deep Learning
The main idea of the research paper is to detect pneumonia from the patient’s chest x- rays. Pneumonia is the infection that causes inflammation of the air sacs in one or both the lungs. The air sacs are filled with purulent material (pus) causing breath shortness, cough, fever, chills.A variety of bacteria, viruses, and fungi can cause pneumonia. In this paper, we used machine learning algorithms to process x-ray images to determine whether or not the patient has pneumonia. This Experiment focusses on the use of deep learning algorithms with VGG16 pre-processing, keras and adams in order to build a model with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信