小库克系统的格拉斯曼约简与动态意见博弈

Daniel Lear, David N. Reynolds, R. Shvydkoy
{"title":"小库克系统的格拉斯曼约简与动态意见博弈","authors":"Daniel Lear, David N. Reynolds, R. Shvydkoy","doi":"10.3934/dcds.2021095","DOIUrl":null,"url":null,"abstract":"In this note we study a new class of alignment models with self-propulsion and Rayleigh-type friction forces, which describes the collective behavior of agents with individual characteristic parameters. We describe the long time dynamics via a new method which allows to reduce analysis from the multidimensional system to a simpler family of two-dimensional systems parametrized by a proper Grassmannian. With this method we demonstrate exponential alignment for a large (and sharp) class of initial velocity configurations confined to a sector of opening less than $\\pi$. \nIn the case when characteristic parameters remain frozen, the system governs dynamics of opinions for a set of players with constant convictions. Viewed as a dynamical non-cooperative game, the system is shown to possess a unique stable Nash equilibrium, which represents a settlement of opinions most agreeable to all agents. Such an agreement is furthermore shown to be a global attractor for any set of initial opinions.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Grassmannian reduction of cucker-smale systems and dynamical opinion games\",\"authors\":\"Daniel Lear, David N. Reynolds, R. Shvydkoy\",\"doi\":\"10.3934/dcds.2021095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we study a new class of alignment models with self-propulsion and Rayleigh-type friction forces, which describes the collective behavior of agents with individual characteristic parameters. We describe the long time dynamics via a new method which allows to reduce analysis from the multidimensional system to a simpler family of two-dimensional systems parametrized by a proper Grassmannian. With this method we demonstrate exponential alignment for a large (and sharp) class of initial velocity configurations confined to a sector of opening less than $\\\\pi$. \\nIn the case when characteristic parameters remain frozen, the system governs dynamics of opinions for a set of players with constant convictions. Viewed as a dynamical non-cooperative game, the system is shown to possess a unique stable Nash equilibrium, which represents a settlement of opinions most agreeable to all agents. Such an agreement is furthermore shown to be a global attractor for any set of initial opinions.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了一类新的具有自推进力和瑞利摩擦力的定向模型,该模型描述了具有个体特征参数的智能体的集体行为。我们通过一种新的方法来描述长时间动力学,该方法允许将分析从多维系统简化为由适当的格拉斯曼参数化的更简单的二维系统族。用这种方法,我们证明了一个大的(和尖锐的)类初始速度配置的指数对准,限制在一个扇形的开口小于$\pi$。在特征参数保持不变的情况下,系统控制着一组拥有坚定信念的玩家的动态观点。作为一个动态的非合作博弈,该系统具有唯一的稳定纳什均衡,它代表了所有主体最同意的意见的解决方案。此外,这种协议对任何一套初步意见都具有全球吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grassmannian reduction of cucker-smale systems and dynamical opinion games
In this note we study a new class of alignment models with self-propulsion and Rayleigh-type friction forces, which describes the collective behavior of agents with individual characteristic parameters. We describe the long time dynamics via a new method which allows to reduce analysis from the multidimensional system to a simpler family of two-dimensional systems parametrized by a proper Grassmannian. With this method we demonstrate exponential alignment for a large (and sharp) class of initial velocity configurations confined to a sector of opening less than $\pi$. In the case when characteristic parameters remain frozen, the system governs dynamics of opinions for a set of players with constant convictions. Viewed as a dynamical non-cooperative game, the system is shown to possess a unique stable Nash equilibrium, which represents a settlement of opinions most agreeable to all agents. Such an agreement is furthermore shown to be a global attractor for any set of initial opinions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信