全抛物型方程的源辨识

IF 1.6 3区 数学 Q1 MATHEMATICS
G. F. Umbricht
{"title":"全抛物型方程的源辨识","authors":"G. F. Umbricht","doi":"10.3846/mma.2021.12700","DOIUrl":null,"url":null,"abstract":"In this work, we consider the problem of identifying the time independent source for full parabolic equations in Rn from noisy data. This is an ill-posed problem in the sense of Hadamard. To compensate the factor that causes the instability, a family of parametric regularization operators is introduced, where the rule to select the value of the regularization parameter is included. This rule, known as regularization parameter choice rule, depends on the data noise level and the degree of smoothness that it is assumed for the source. The proof for the stability and convergence of the regularization criteria is presented and a Hölder type bound is obtained for the estimation error. Numerical examples are included to illustrate the effectiveness of this regularization approach.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"35 1","pages":"339-357"},"PeriodicalIF":1.6000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of the Source for Full parabolic equations\",\"authors\":\"G. F. Umbricht\",\"doi\":\"10.3846/mma.2021.12700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the problem of identifying the time independent source for full parabolic equations in Rn from noisy data. This is an ill-posed problem in the sense of Hadamard. To compensate the factor that causes the instability, a family of parametric regularization operators is introduced, where the rule to select the value of the regularization parameter is included. This rule, known as regularization parameter choice rule, depends on the data noise level and the degree of smoothness that it is assumed for the source. The proof for the stability and convergence of the regularization criteria is presented and a Hölder type bound is obtained for the estimation error. Numerical examples are included to illustrate the effectiveness of this regularization approach.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"35 1\",\"pages\":\"339-357\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2021.12700\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2021.12700","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们考虑了从噪声数据中识别Rn中全抛物方程的时间无关源的问题。这是Hadamard意义上的不适定问题。为了补偿引起不稳定性的因素,引入了一组参数正则化算子,其中包括正则化参数值的选择规则。该规则被称为正则化参数选择规则,它取决于数据噪声水平和对源假设的平滑程度。给出了正则化准则的稳定性和收敛性的证明,并给出了估计误差的Hölder型界。数值算例说明了这种正则化方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of the Source for Full parabolic equations
In this work, we consider the problem of identifying the time independent source for full parabolic equations in Rn from noisy data. This is an ill-posed problem in the sense of Hadamard. To compensate the factor that causes the instability, a family of parametric regularization operators is introduced, where the rule to select the value of the regularization parameter is included. This rule, known as regularization parameter choice rule, depends on the data noise level and the degree of smoothness that it is assumed for the source. The proof for the stability and convergence of the regularization criteria is presented and a Hölder type bound is obtained for the estimation error. Numerical examples are included to illustrate the effectiveness of this regularization approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信