K. Yamasaki, O. Yanagi, Y. Sunada, K. Hatta, R. Shigesada, M. Sumino, T. Yamaguchi, Md. Anwarul Islam, N. Tamura, H. Okuno, S. Namba
{"title":"基于空心阴极梯级电弧放电的稳态高密度等离子体放电特性。","authors":"K. Yamasaki, O. Yanagi, Y. Sunada, K. Hatta, R. Shigesada, M. Sumino, T. Yamaguchi, Md. Anwarul Islam, N. Tamura, H. Okuno, S. Namba","doi":"10.1063/5.0076388","DOIUrl":null,"url":null,"abstract":"We developed a steady-state high-density plasma source by applying a hollow cathode to a cascade arc discharge device. The hollow cathode is made of a thermionic material (LaB6) to facilitate plasma production inside it. The cascade arc discharge device with the hollow cathode produced a stationary plasma with an electron density of about 1016 cm-3. It was found that the plasma source produces a strong pressure gradient between the gas feed and the vacuum chamber. The plasma source separated the atmospheric pressure (100 kPa) and a vacuum (100 Pa) when the discharge was performed with an argon gas flow rate of 5.0 l/min and a discharge current of 40 A. An analysis of the pressure gradient along the plasma source showed that the pressure difference between the gas feed and the vacuum chamber can be well described by the Hagen-Poiseuille flow equation, indicating that the viscosity of the neutral gas is the dominant factor for producing this pressure gradient. A potential profile analysis suggested that the plasma was mainly heated within cylindrical channels whose inner diameter was 3 mm. This feature and the results of the pressure ratio analysis indicated that the temperature, and, thus, viscosity, of the neutral gas increased with the increasing number of intermediate electrodes. The discharge characteristics and shape of the hollow cathode are suitable for plasma window applications.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"34 1","pages":"053502"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discharge characteristics of steady-state high-density plasma source based on cascade arc discharge with hollow cathode.\",\"authors\":\"K. Yamasaki, O. Yanagi, Y. Sunada, K. Hatta, R. Shigesada, M. Sumino, T. Yamaguchi, Md. Anwarul Islam, N. Tamura, H. Okuno, S. Namba\",\"doi\":\"10.1063/5.0076388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a steady-state high-density plasma source by applying a hollow cathode to a cascade arc discharge device. The hollow cathode is made of a thermionic material (LaB6) to facilitate plasma production inside it. The cascade arc discharge device with the hollow cathode produced a stationary plasma with an electron density of about 1016 cm-3. It was found that the plasma source produces a strong pressure gradient between the gas feed and the vacuum chamber. The plasma source separated the atmospheric pressure (100 kPa) and a vacuum (100 Pa) when the discharge was performed with an argon gas flow rate of 5.0 l/min and a discharge current of 40 A. An analysis of the pressure gradient along the plasma source showed that the pressure difference between the gas feed and the vacuum chamber can be well described by the Hagen-Poiseuille flow equation, indicating that the viscosity of the neutral gas is the dominant factor for producing this pressure gradient. A potential profile analysis suggested that the plasma was mainly heated within cylindrical channels whose inner diameter was 3 mm. This feature and the results of the pressure ratio analysis indicated that the temperature, and, thus, viscosity, of the neutral gas increased with the increasing number of intermediate electrodes. The discharge characteristics and shape of the hollow cathode are suitable for plasma window applications.\",\"PeriodicalId\":54761,\"journal\":{\"name\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"volume\":\"34 1\",\"pages\":\"053502\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0076388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0076388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discharge characteristics of steady-state high-density plasma source based on cascade arc discharge with hollow cathode.
We developed a steady-state high-density plasma source by applying a hollow cathode to a cascade arc discharge device. The hollow cathode is made of a thermionic material (LaB6) to facilitate plasma production inside it. The cascade arc discharge device with the hollow cathode produced a stationary plasma with an electron density of about 1016 cm-3. It was found that the plasma source produces a strong pressure gradient between the gas feed and the vacuum chamber. The plasma source separated the atmospheric pressure (100 kPa) and a vacuum (100 Pa) when the discharge was performed with an argon gas flow rate of 5.0 l/min and a discharge current of 40 A. An analysis of the pressure gradient along the plasma source showed that the pressure difference between the gas feed and the vacuum chamber can be well described by the Hagen-Poiseuille flow equation, indicating that the viscosity of the neutral gas is the dominant factor for producing this pressure gradient. A potential profile analysis suggested that the plasma was mainly heated within cylindrical channels whose inner diameter was 3 mm. This feature and the results of the pressure ratio analysis indicated that the temperature, and, thus, viscosity, of the neutral gas increased with the increasing number of intermediate electrodes. The discharge characteristics and shape of the hollow cathode are suitable for plasma window applications.