零售层面卷曲红辣椒价格预测模型选择

K. Sukiyono, Miftahul Janah
{"title":"零售层面卷曲红辣椒价格预测模型选择","authors":"K. Sukiyono, Miftahul Janah","doi":"10.32734/INJAR.V2I1.859","DOIUrl":null,"url":null,"abstract":"Chilli is one of strategic commodity in Indonesia due to its contribution to inflation level. For this reason, future price information is very importance for designing price policy. Future price merely can be provided by conducting a price forecasting. Various forecasting models can be applied for this purpose; the problem is which the best model for forecasting is. This study aims to select the most accurate forecasting model of curly red chili prices at the retail level. The data used are monthly data, from 2011 - 2017. Five forecasting models are applied and estimated including Moving Average, Single Exponential Smoothing, Double Exponential Smoothing, Decomposition, and ARIMA. The best model is selected based on the smallest MAPE, MSE and MAD values. The results show that the most accurate forecasting model is ARIMA (1,1,9).","PeriodicalId":34255,"journal":{"name":"Indonesian Journal of Agricultural Research","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Forecasting Model Selection of Curly Red Chili Price at Retail Level\",\"authors\":\"K. Sukiyono, Miftahul Janah\",\"doi\":\"10.32734/INJAR.V2I1.859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chilli is one of strategic commodity in Indonesia due to its contribution to inflation level. For this reason, future price information is very importance for designing price policy. Future price merely can be provided by conducting a price forecasting. Various forecasting models can be applied for this purpose; the problem is which the best model for forecasting is. This study aims to select the most accurate forecasting model of curly red chili prices at the retail level. The data used are monthly data, from 2011 - 2017. Five forecasting models are applied and estimated including Moving Average, Single Exponential Smoothing, Double Exponential Smoothing, Decomposition, and ARIMA. The best model is selected based on the smallest MAPE, MSE and MAD values. The results show that the most accurate forecasting model is ARIMA (1,1,9).\",\"PeriodicalId\":34255,\"journal\":{\"name\":\"Indonesian Journal of Agricultural Research\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Agricultural Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32734/INJAR.V2I1.859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32734/INJAR.V2I1.859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于辣椒对通胀水平的影响,它是印尼的战略商品之一。因此,未来的价格信息对于制定价格政策非常重要。只有进行价格预测才能提供未来的价格。为此,可以应用各种预测模型;问题是哪种预测模型最好。本研究旨在选择最准确的红辣椒零售价格预测模型。使用的数据是2011年至2017年的月度数据。采用移动平均、单指数平滑、双指数平滑、分解和ARIMA五种预测模型进行预测。根据最小的MAPE、MSE和MAD值选择最佳模型。结果表明,最准确的预测模型为ARIMA(1,1,9)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Model Selection of Curly Red Chili Price at Retail Level
Chilli is one of strategic commodity in Indonesia due to its contribution to inflation level. For this reason, future price information is very importance for designing price policy. Future price merely can be provided by conducting a price forecasting. Various forecasting models can be applied for this purpose; the problem is which the best model for forecasting is. This study aims to select the most accurate forecasting model of curly red chili prices at the retail level. The data used are monthly data, from 2011 - 2017. Five forecasting models are applied and estimated including Moving Average, Single Exponential Smoothing, Double Exponential Smoothing, Decomposition, and ARIMA. The best model is selected based on the smallest MAPE, MSE and MAD values. The results show that the most accurate forecasting model is ARIMA (1,1,9).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信