基于晶格玻尔兹曼法估算裂缝性非常规油藏相对渗透率的水驱过程数值模拟

Zhuoran Li, Tianluo Chen, Yang Ning, Kaiyi Zhang, G. Qin
{"title":"基于晶格玻尔兹曼法估算裂缝性非常规油藏相对渗透率的水驱过程数值模拟","authors":"Zhuoran Li, Tianluo Chen, Yang Ning, Kaiyi Zhang, G. Qin","doi":"10.2118/194770-MS","DOIUrl":null,"url":null,"abstract":"\n Shale formations exhibit multi-scale geological features such as nanopores in formation matrix and fractures at multiple length scales. Accurate prediction of relative permeability and capillary pressure are vital in numerical simulations of shale reservoirs. The multi-scale geological features of shale formations present great challenges for traditional experimental approach. Compared to nanopores in formation matrix, fractures, especially connected fractures, have much more significant impact on multiphase flows. Traditional flow models like Darcy's law are not valid for modeling fluid flow in fracture space nor in nanopores. In this work, we apply multiphase lattice Boltzmann simulation for unsteady-state waterflooding process in highly fractured samples to study the effects of fracture connectivity, wetting preference, and gravitional forces.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Simulation of Waterflooding Process using Lattice Boltzmann Method to Estimate Relative Permeability for Fractured Unconventional Reservoirs\",\"authors\":\"Zhuoran Li, Tianluo Chen, Yang Ning, Kaiyi Zhang, G. Qin\",\"doi\":\"10.2118/194770-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Shale formations exhibit multi-scale geological features such as nanopores in formation matrix and fractures at multiple length scales. Accurate prediction of relative permeability and capillary pressure are vital in numerical simulations of shale reservoirs. The multi-scale geological features of shale formations present great challenges for traditional experimental approach. Compared to nanopores in formation matrix, fractures, especially connected fractures, have much more significant impact on multiphase flows. Traditional flow models like Darcy's law are not valid for modeling fluid flow in fracture space nor in nanopores. In this work, we apply multiphase lattice Boltzmann simulation for unsteady-state waterflooding process in highly fractured samples to study the effects of fracture connectivity, wetting preference, and gravitional forces.\",\"PeriodicalId\":11031,\"journal\":{\"name\":\"Day 4 Thu, March 21, 2019\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, March 21, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194770-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194770-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

页岩地层具有多尺度的地质特征,如地层基质中的纳米孔、多长度尺度的裂缝等。在页岩储层数值模拟中,准确预测相对渗透率和毛管压力至关重要。页岩储层的多尺度地质特征对传统的实验方法提出了挑战。与地层基质中的纳米孔相比,裂缝尤其是连通裂缝对多相流的影响要大得多。传统的流体流动模型,如达西定律,并不适用于模拟裂缝空间和纳米孔中的流体流动。在这项工作中,我们应用多相晶格玻尔兹曼模拟高裂缝样品的非稳态水驱过程,研究裂缝连通性、润湿偏好和重力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of Waterflooding Process using Lattice Boltzmann Method to Estimate Relative Permeability for Fractured Unconventional Reservoirs
Shale formations exhibit multi-scale geological features such as nanopores in formation matrix and fractures at multiple length scales. Accurate prediction of relative permeability and capillary pressure are vital in numerical simulations of shale reservoirs. The multi-scale geological features of shale formations present great challenges for traditional experimental approach. Compared to nanopores in formation matrix, fractures, especially connected fractures, have much more significant impact on multiphase flows. Traditional flow models like Darcy's law are not valid for modeling fluid flow in fracture space nor in nanopores. In this work, we apply multiphase lattice Boltzmann simulation for unsteady-state waterflooding process in highly fractured samples to study the effects of fracture connectivity, wetting preference, and gravitional forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信