微分算子的拉普拉斯不变量

David Hobby, E. Shemyakova
{"title":"微分算子的拉普拉斯不变量","authors":"David Hobby, E. Shemyakova","doi":"10.1215/00192082-8746137","DOIUrl":null,"url":null,"abstract":"We identify conditions giving large natural classes of partial differential operators for which it is possible to construct a complete set of Laplace invariants. In order to do that we investigate general properties of differential invariants of partial differential operators under gauge transformations and introduce a sufficient condition for a set of invariants to be complete. We also give a some mild conditions that guarantee the existence of such a set. The proof is constructive. The method gives many examples of invariants previously known in the literature as well as many new examples including multidimensional.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplace invariants of differential operators\",\"authors\":\"David Hobby, E. Shemyakova\",\"doi\":\"10.1215/00192082-8746137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify conditions giving large natural classes of partial differential operators for which it is possible to construct a complete set of Laplace invariants. In order to do that we investigate general properties of differential invariants of partial differential operators under gauge transformations and introduce a sufficient condition for a set of invariants to be complete. We also give a some mild conditions that guarantee the existence of such a set. The proof is constructive. The method gives many examples of invariants previously known in the literature as well as many new examples including multidimensional.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-8746137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8746137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了给出大的自然偏微分算子类的条件,对于这些类,可以构造完整的拉普拉斯不变量集。为了做到这一点,我们研究了规范变换下偏微分算子的微分不变量的一般性质,并引入了一组不变量完备的充分条件。并给出了该类集合存在的一些温和条件。这个证明是建设性的。该方法给出了文献中已知的不变量的许多例子以及包括多维在内的许多新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplace invariants of differential operators
We identify conditions giving large natural classes of partial differential operators for which it is possible to construct a complete set of Laplace invariants. In order to do that we investigate general properties of differential invariants of partial differential operators under gauge transformations and introduce a sufficient condition for a set of invariants to be complete. We also give a some mild conditions that guarantee the existence of such a set. The proof is constructive. The method gives many examples of invariants previously known in the literature as well as many new examples including multidimensional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信