{"title":"借助凸化算子的向量平衡问题近似拟弱有效解的最优性","authors":"Guolin Yu, Siqi Li, Xiaosu Pan, Wenyan Han","doi":"10.1142/s0217595921500470","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the investigation of optimality conditions for approximate quasi-weakly efficient solutions to a class of nonsmooth Vector Equilibrium Problem (VEP) via convexificators. First, a necessary optimality condition for approximate quasi-weakly efficient solutions to problem (VEP) is presented by making use of the properties of convexificators. Second, the notion of approximate pseudoconvex function in the form of convexificators is introduced, and its existence is verified by a concrete example. Under the introduced generalized convexity assumption, a sufficient optimality condition for approximate quasi-weakly efficient solutions to problem (VEP) is also established. Finally, a scalar characterization for approximate quasi-weakly efficient solutions to problem (VEP) is obtained by taking advantage of Tammer’s function.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality of Approximate Quasi-Weakly Efficient Solutions for Vector Equilibrium Problems via Convexificators\",\"authors\":\"Guolin Yu, Siqi Li, Xiaosu Pan, Wenyan Han\",\"doi\":\"10.1142/s0217595921500470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the investigation of optimality conditions for approximate quasi-weakly efficient solutions to a class of nonsmooth Vector Equilibrium Problem (VEP) via convexificators. First, a necessary optimality condition for approximate quasi-weakly efficient solutions to problem (VEP) is presented by making use of the properties of convexificators. Second, the notion of approximate pseudoconvex function in the form of convexificators is introduced, and its existence is verified by a concrete example. Under the introduced generalized convexity assumption, a sufficient optimality condition for approximate quasi-weakly efficient solutions to problem (VEP) is also established. Finally, a scalar characterization for approximate quasi-weakly efficient solutions to problem (VEP) is obtained by taking advantage of Tammer’s function.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217595921500470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595921500470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimality of Approximate Quasi-Weakly Efficient Solutions for Vector Equilibrium Problems via Convexificators
This paper is devoted to the investigation of optimality conditions for approximate quasi-weakly efficient solutions to a class of nonsmooth Vector Equilibrium Problem (VEP) via convexificators. First, a necessary optimality condition for approximate quasi-weakly efficient solutions to problem (VEP) is presented by making use of the properties of convexificators. Second, the notion of approximate pseudoconvex function in the form of convexificators is introduced, and its existence is verified by a concrete example. Under the introduced generalized convexity assumption, a sufficient optimality condition for approximate quasi-weakly efficient solutions to problem (VEP) is also established. Finally, a scalar characterization for approximate quasi-weakly efficient solutions to problem (VEP) is obtained by taking advantage of Tammer’s function.