不连续Galerkin格式下未解析湍流的跳罚稳定技术

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiaqing Kou , Oscar A. Marino , Esteban Ferrer
{"title":"不连续Galerkin格式下未解析湍流的跳罚稳定技术","authors":"Jiaqing Kou ,&nbsp;Oscar A. Marino ,&nbsp;Esteban Ferrer","doi":"10.1016/j.jcp.2023.112399","DOIUrl":null,"url":null,"abstract":"<div><p>Jump penalty stabilization techniques for under-resolved turbulence have been recently proposed for continuous and discontinuous high order Galerkin schemes <span>[1]</span>, <span>[2]</span>, <span>[3]</span>. The stabilization relies on the gradient or solution discontinuity at element interfaces to incorporate localised numerical diffusion in the numerical scheme. This diffusion acts as an implicit subgrid model and stabilizes under-resolved turbulent simulations.</p><p>This paper investigates the effect of jump penalty stabilization methods (penalising gradient or solution) for stabilization and improvement of high-order discontinuous Galerkin schemes in turbulent regime. We analyze these schemes using an eigensolution analysis, a 1D non-linear Burgers equation (mimicking a turbulent cascade) and 3D turbulent Navier-Stokes simulations (Taylor-Green Vortex and Kelvin-Helmholtz Instability problems).</p><p>We show that the two jump penalty stabilization techniques can stabilize under-resolved simulations thanks to the improved dispersion-dissipation characteristics (when compared to non-penalized schemes) and provide accurate results for turbulent flows. The numerical results indicate that the proposed jump penalty methods stabilize under-resolved simulations and improve the simulations, when compared to the original unpenalized scheme and to classic explicit subgrid models (Smagorinsky and Vreman).</p></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"491 ","pages":"Article 112399"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021999123004941/pdfft?md5=dbbdd7556718ce6c831a5d3f5df1aa48&pid=1-s2.0-S0021999123004941-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Jump penalty stabilization techniques for under-resolved turbulence in discontinuous Galerkin schemes\",\"authors\":\"Jiaqing Kou ,&nbsp;Oscar A. Marino ,&nbsp;Esteban Ferrer\",\"doi\":\"10.1016/j.jcp.2023.112399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Jump penalty stabilization techniques for under-resolved turbulence have been recently proposed for continuous and discontinuous high order Galerkin schemes <span>[1]</span>, <span>[2]</span>, <span>[3]</span>. The stabilization relies on the gradient or solution discontinuity at element interfaces to incorporate localised numerical diffusion in the numerical scheme. This diffusion acts as an implicit subgrid model and stabilizes under-resolved turbulent simulations.</p><p>This paper investigates the effect of jump penalty stabilization methods (penalising gradient or solution) for stabilization and improvement of high-order discontinuous Galerkin schemes in turbulent regime. We analyze these schemes using an eigensolution analysis, a 1D non-linear Burgers equation (mimicking a turbulent cascade) and 3D turbulent Navier-Stokes simulations (Taylor-Green Vortex and Kelvin-Helmholtz Instability problems).</p><p>We show that the two jump penalty stabilization techniques can stabilize under-resolved simulations thanks to the improved dispersion-dissipation characteristics (when compared to non-penalized schemes) and provide accurate results for turbulent flows. The numerical results indicate that the proposed jump penalty methods stabilize under-resolved simulations and improve the simulations, when compared to the original unpenalized scheme and to classic explicit subgrid models (Smagorinsky and Vreman).</p></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"491 \",\"pages\":\"Article 112399\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021999123004941/pdfft?md5=dbbdd7556718ce6c831a5d3f5df1aa48&pid=1-s2.0-S0021999123004941-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999123004941\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999123004941","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

针对连续和不连续高阶Galerkin格式[1],[2],[3],最近提出了欠分解湍流的跳罚稳定化技术。稳定化依赖于梯度或单元界面处的解不连续来将局部数值扩散纳入数值方案。这种扩散作为一个隐式的子网格模型,稳定了欠分解湍流模拟。研究了跳跃惩罚稳定化方法(惩罚梯度或惩罚解)对湍流状态下高阶不连续伽辽金格式的稳定化和改进的效果。我们使用特征解分析、一维非线性Burgers方程(模拟湍流级联)和三维湍流Navier-Stokes模拟(Taylor-Green Vortex和Kelvin-Helmholtz不稳定性问题)来分析这些方案。我们表明,由于改进了色散耗散特性(与非惩罚方案相比),两种跳跃惩罚稳定化技术可以稳定低分辨率模拟,并为湍流提供准确的结果。数值结果表明,与原始的无惩罚方案和经典的显式子网格模型(Smagorinsky和Vreman)相比,所提出的跳跃惩罚方法稳定了欠分辨模拟并改善了模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jump penalty stabilization techniques for under-resolved turbulence in discontinuous Galerkin schemes

Jump penalty stabilization techniques for under-resolved turbulence have been recently proposed for continuous and discontinuous high order Galerkin schemes [1], [2], [3]. The stabilization relies on the gradient or solution discontinuity at element interfaces to incorporate localised numerical diffusion in the numerical scheme. This diffusion acts as an implicit subgrid model and stabilizes under-resolved turbulent simulations.

This paper investigates the effect of jump penalty stabilization methods (penalising gradient or solution) for stabilization and improvement of high-order discontinuous Galerkin schemes in turbulent regime. We analyze these schemes using an eigensolution analysis, a 1D non-linear Burgers equation (mimicking a turbulent cascade) and 3D turbulent Navier-Stokes simulations (Taylor-Green Vortex and Kelvin-Helmholtz Instability problems).

We show that the two jump penalty stabilization techniques can stabilize under-resolved simulations thanks to the improved dispersion-dissipation characteristics (when compared to non-penalized schemes) and provide accurate results for turbulent flows. The numerical results indicate that the proposed jump penalty methods stabilize under-resolved simulations and improve the simulations, when compared to the original unpenalized scheme and to classic explicit subgrid models (Smagorinsky and Vreman).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信