大协方差矩阵的收缩估计:保持简单,统计学家?

Olivier Ledoit, Michael Wolf
{"title":"大协方差矩阵的收缩估计:保持简单,统计学家?","authors":"Olivier Ledoit, Michael Wolf","doi":"10.2139/ssrn.3421503","DOIUrl":null,"url":null,"abstract":"Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is to be minimized. We solve the problem of optimal covariance matrix estimation under a variety of loss functions motivated by statistical precedent, probability theory, and differential geometry. A key ingredient of our nonlinear shrinkage methodology is a new estimator of the angle between sample and population eigenvectors, without making strong assumptions on the population eigenvalues. We also introduce a broad family of covariance matrix estimators that can handle all regular functional transformations of the population covariance matrix under large-dimensional asymptotics. In addition, we compare via Monte Carlo simulations our methodology to two simpler ones from the literature, linear shrinkage and shrinkage based on the spiked covariance model.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Shrinkage Estimation of Large Covariance Matrices: Keep it Simple, Statistician?\",\"authors\":\"Olivier Ledoit, Michael Wolf\",\"doi\":\"10.2139/ssrn.3421503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is to be minimized. We solve the problem of optimal covariance matrix estimation under a variety of loss functions motivated by statistical precedent, probability theory, and differential geometry. A key ingredient of our nonlinear shrinkage methodology is a new estimator of the angle between sample and population eigenvectors, without making strong assumptions on the population eigenvalues. We also introduce a broad family of covariance matrix estimators that can handle all regular functional transformations of the population covariance matrix under large-dimensional asymptotics. In addition, we compare via Monte Carlo simulations our methodology to two simpler ones from the literature, linear shrinkage and shrinkage based on the spiked covariance model.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3421503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3421503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在旋转等变决策理论下,通过将样本特征向量与不可观测总体协方差矩阵的一个(可能是非线性的)函数重新组合,可以最优地缩小样本协方差矩阵的特征值。该函数的最佳形状反映了要最小化的损失/风险。我们解决了在统计先例、概率论和微分几何驱动的各种损失函数下的最优协方差矩阵估计问题。我们的非线性收缩方法的一个关键组成部分是样本和总体特征向量之间的角度的一个新的估计,而不是对总体特征值进行强假设。我们还引入了一大类协方差矩阵估计量,它们可以处理大维渐近情况下总体协方差矩阵的所有正则泛函变换。此外,我们通过蒙特卡罗模拟将我们的方法与文献中的两个更简单的方法进行比较,线性收缩和基于尖刺协方差模型的收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shrinkage Estimation of Large Covariance Matrices: Keep it Simple, Statistician?
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is to be minimized. We solve the problem of optimal covariance matrix estimation under a variety of loss functions motivated by statistical precedent, probability theory, and differential geometry. A key ingredient of our nonlinear shrinkage methodology is a new estimator of the angle between sample and population eigenvectors, without making strong assumptions on the population eigenvalues. We also introduce a broad family of covariance matrix estimators that can handle all regular functional transformations of the population covariance matrix under large-dimensional asymptotics. In addition, we compare via Monte Carlo simulations our methodology to two simpler ones from the literature, linear shrinkage and shrinkage based on the spiked covariance model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信