{"title":"基于LIBOR市场模型的负利率现实世界情景","authors":"S. Lopes, C. Vázquez","doi":"10.1080/1350486X.2018.1492348","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we present a methodology to simulate the evolution of interest rates under real-world probability measure. More precisely, using the multidimensional Shifted Lognormal LIBOR market model and a specification of the market price of risk vector process, we explain how to perform simulations of the real-world forward rates in the future, using the Euler‒Maruyama scheme with a predictor‒corrector strategy. The proposed methodology allows for the presence of negative interest rates as currently observed in the markets.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"41 1","pages":"466 - 482"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-World Scenarios With Negative Interest Rates Based on the LIBOR Market Model\",\"authors\":\"S. Lopes, C. Vázquez\",\"doi\":\"10.1080/1350486X.2018.1492348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, we present a methodology to simulate the evolution of interest rates under real-world probability measure. More precisely, using the multidimensional Shifted Lognormal LIBOR market model and a specification of the market price of risk vector process, we explain how to perform simulations of the real-world forward rates in the future, using the Euler‒Maruyama scheme with a predictor‒corrector strategy. The proposed methodology allows for the presence of negative interest rates as currently observed in the markets.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"41 1\",\"pages\":\"466 - 482\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2018.1492348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1492348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Real-World Scenarios With Negative Interest Rates Based on the LIBOR Market Model
ABSTRACT In this article, we present a methodology to simulate the evolution of interest rates under real-world probability measure. More precisely, using the multidimensional Shifted Lognormal LIBOR market model and a specification of the market price of risk vector process, we explain how to perform simulations of the real-world forward rates in the future, using the Euler‒Maruyama scheme with a predictor‒corrector strategy. The proposed methodology allows for the presence of negative interest rates as currently observed in the markets.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.