平面纯编结在六股上

J. Mostovoy, Christopher Roque-M'arquez
{"title":"平面纯编结在六股上","authors":"J. Mostovoy, Christopher Roque-M'arquez","doi":"10.1142/S0218216519500974","DOIUrl":null,"url":null,"abstract":"The group of planar (or flat) pure braids on $n$ strands, also known as the pure twin group, is the fundamental group of the configuration space $F_{n,3}(\\mathbb{R})$ of $n$ labelled points in $\\mathbb{R}$ no three of which coincide. The planar pure braid groups on 3, 4 and 5 strands are free. In this note we describe the planar pure braid group on 6 strands: it is a free product of the free group on 71 generators and 20 copies of the free abelian group of rank two.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Planar pure braids on six strands\",\"authors\":\"J. Mostovoy, Christopher Roque-M'arquez\",\"doi\":\"10.1142/S0218216519500974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The group of planar (or flat) pure braids on $n$ strands, also known as the pure twin group, is the fundamental group of the configuration space $F_{n,3}(\\\\mathbb{R})$ of $n$ labelled points in $\\\\mathbb{R}$ no three of which coincide. The planar pure braid groups on 3, 4 and 5 strands are free. In this note we describe the planar pure braid group on 6 strands: it is a free product of the free group on 71 generators and 20 copies of the free abelian group of rank two.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218216519500974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218216519500974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

n条链上的平面(或平坦)纯辫群,也称为纯孪生群,是位形空间$F_{n,3}(\mathbb{R})$的n个标记点在$\mathbb{R}$中没有三个重合的基本群。3、4和5股上的平面纯编织团是自由的。本文描述了6股上的平面纯编织群,它是71个生成元上的自由群和20个二阶自由阿贝尔群的自由积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar pure braids on six strands
The group of planar (or flat) pure braids on $n$ strands, also known as the pure twin group, is the fundamental group of the configuration space $F_{n,3}(\mathbb{R})$ of $n$ labelled points in $\mathbb{R}$ no three of which coincide. The planar pure braid groups on 3, 4 and 5 strands are free. In this note we describe the planar pure braid group on 6 strands: it is a free product of the free group on 71 generators and 20 copies of the free abelian group of rank two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信