{"title":"面向智能电网供需协调的分布式能源管理","authors":"Yihe Zhang, Ling Gao, Yinliang Xu","doi":"10.1109/TDC.2016.7519905","DOIUrl":null,"url":null,"abstract":"New low-carbon appliances (renewable generator, electric vehicle, etc.) develop rapidly and require advance control strategies to address their new features such as dispersed location and intermittency. Traditional centralized methods may not be an effective and economical solution, since a sophisticated communication network is needed to collect global information and a powerful central controller is required to process huge amount of data. This paper proposes a distributed method to optimize the overall social benefit and maintain the supply demand balance in a smart grid, considering three different types of load models including electric vehicle, air conditioning, lighting and electronic devices. Only information exchange among neighboring nodes is utilized, which enables the sharing of the computation and communication burden among local controllers to simplify the communication network and avoid the investment of expensive and powerful central controller. The effectiveness of the proposed distributed method is demonstrated through the simulation in the IEEE 14-bus system.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distributed energy management for supply-demand coordination in a smart grid\",\"authors\":\"Yihe Zhang, Ling Gao, Yinliang Xu\",\"doi\":\"10.1109/TDC.2016.7519905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New low-carbon appliances (renewable generator, electric vehicle, etc.) develop rapidly and require advance control strategies to address their new features such as dispersed location and intermittency. Traditional centralized methods may not be an effective and economical solution, since a sophisticated communication network is needed to collect global information and a powerful central controller is required to process huge amount of data. This paper proposes a distributed method to optimize the overall social benefit and maintain the supply demand balance in a smart grid, considering three different types of load models including electric vehicle, air conditioning, lighting and electronic devices. Only information exchange among neighboring nodes is utilized, which enables the sharing of the computation and communication burden among local controllers to simplify the communication network and avoid the investment of expensive and powerful central controller. The effectiveness of the proposed distributed method is demonstrated through the simulation in the IEEE 14-bus system.\",\"PeriodicalId\":6497,\"journal\":{\"name\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"3 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2016.7519905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7519905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed energy management for supply-demand coordination in a smart grid
New low-carbon appliances (renewable generator, electric vehicle, etc.) develop rapidly and require advance control strategies to address their new features such as dispersed location and intermittency. Traditional centralized methods may not be an effective and economical solution, since a sophisticated communication network is needed to collect global information and a powerful central controller is required to process huge amount of data. This paper proposes a distributed method to optimize the overall social benefit and maintain the supply demand balance in a smart grid, considering three different types of load models including electric vehicle, air conditioning, lighting and electronic devices. Only information exchange among neighboring nodes is utilized, which enables the sharing of the computation and communication burden among local controllers to simplify the communication network and avoid the investment of expensive and powerful central controller. The effectiveness of the proposed distributed method is demonstrated through the simulation in the IEEE 14-bus system.