{"title":"三维点跟踪Stokes问题最优控制的改进误差估计","authors":"Niklas Behringer","doi":"10.3934/mcrf.2020038","DOIUrl":null,"url":null,"abstract":". This work is motivated by recent interest in the topic of pointwise tracking type optimal control problems for the Stokes problem. Pointwise tracking consists of point evaluations in the objective functional which lead to Dirac measures appearing as source terms of the adjoint problem. Consider- ing bounds for the control allows for improved regularity results for the exact solution and improved approximation error estimates of its numerical coun- terpart. We show a sub-optimal convergence result in three dimensions that nonetheless improves the results known from the literature. Finally, we offer supporting numerical experiments and insights towards optimal approximation error estimates.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions\",\"authors\":\"Niklas Behringer\",\"doi\":\"10.3934/mcrf.2020038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This work is motivated by recent interest in the topic of pointwise tracking type optimal control problems for the Stokes problem. Pointwise tracking consists of point evaluations in the objective functional which lead to Dirac measures appearing as source terms of the adjoint problem. Consider- ing bounds for the control allows for improved regularity results for the exact solution and improved approximation error estimates of its numerical coun- terpart. We show a sub-optimal convergence result in three dimensions that nonetheless improves the results known from the literature. Finally, we offer supporting numerical experiments and insights towards optimal approximation error estimates.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2020038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2020038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions
. This work is motivated by recent interest in the topic of pointwise tracking type optimal control problems for the Stokes problem. Pointwise tracking consists of point evaluations in the objective functional which lead to Dirac measures appearing as source terms of the adjoint problem. Consider- ing bounds for the control allows for improved regularity results for the exact solution and improved approximation error estimates of its numerical coun- terpart. We show a sub-optimal convergence result in three dimensions that nonetheless improves the results known from the literature. Finally, we offer supporting numerical experiments and insights towards optimal approximation error estimates.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.