贝叶斯新闻定价

Dmitry Livdan, Alexander Nezlobin
{"title":"贝叶斯新闻定价","authors":"Dmitry Livdan, Alexander Nezlobin","doi":"10.2139/ssrn.3225448","DOIUrl":null,"url":null,"abstract":"This paper characterizes the equilibrium stock price reaction to arbitrarily distributed signals when the prior distribution of the payoff is normal and the utility is exponential. This stock price reaction is shown to be proportional to the Fisher score of the news calculated under a risk-neutral probability measure. As an application of our analysis, we (i) characterize the stock price reaction to news whose arrival is content-dependent, (ii) develop a model of \"agenda-setting\" disclosures, and (iii) construct an equilibrium in a voluntary disclosure model with multidimensional information and risk averse investors.<br>","PeriodicalId":12319,"journal":{"name":"Financial Accounting eJournal","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Pricing of News\",\"authors\":\"Dmitry Livdan, Alexander Nezlobin\",\"doi\":\"10.2139/ssrn.3225448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper characterizes the equilibrium stock price reaction to arbitrarily distributed signals when the prior distribution of the payoff is normal and the utility is exponential. This stock price reaction is shown to be proportional to the Fisher score of the news calculated under a risk-neutral probability measure. As an application of our analysis, we (i) characterize the stock price reaction to news whose arrival is content-dependent, (ii) develop a model of \\\"agenda-setting\\\" disclosures, and (iii) construct an equilibrium in a voluntary disclosure model with multidimensional information and risk averse investors.<br>\",\"PeriodicalId\":12319,\"journal\":{\"name\":\"Financial Accounting eJournal\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Accounting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3225448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3225448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了当收益的先验分布为正态分布,效用为指数分布时,均衡股票价格对任意分布信号的反应。这种股价反应被证明与在风险中性概率度量下计算出的新闻的费雪得分成正比。作为我们分析的应用,我们(i)描述了股票价格对内容依赖新闻的反应,(ii)开发了一个“议程设置”披露模型,(iii)在具有多维信息和风险厌恶投资者的自愿披露模型中构建了一个均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Pricing of News
This paper characterizes the equilibrium stock price reaction to arbitrarily distributed signals when the prior distribution of the payoff is normal and the utility is exponential. This stock price reaction is shown to be proportional to the Fisher score of the news calculated under a risk-neutral probability measure. As an application of our analysis, we (i) characterize the stock price reaction to news whose arrival is content-dependent, (ii) develop a model of "agenda-setting" disclosures, and (iii) construct an equilibrium in a voluntary disclosure model with multidimensional information and risk averse investors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信