在不学习邻居颜色的情况下快速着色

M. Halldórsson, F. Kuhn, Yannic Maus, Alexandre Nolin
{"title":"在不学习邻居颜色的情况下快速着色","authors":"M. Halldórsson, F. Kuhn, Yannic Maus, Alexandre Nolin","doi":"10.4230/LIPIcs.DISC.2020.39","DOIUrl":null,"url":null,"abstract":"We give an improved randomized CONGEST algorithm for distance-$2$ coloring that uses $\\Delta^2+1$ colors and runs in $O(\\log n)$ rounds, improving the recent $O(\\log \\Delta \\cdot \\log n)$-round algorithm in [Halldorsson, Kuhn, Maus; PODC '20]. We then improve the time complexity to $O(\\log \\Delta) + 2^{O(\\sqrt{\\log\\log n})}$.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"22 1","pages":"39:1-39:17"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Coloring Fast Without Learning Your Neighbors' Colors\",\"authors\":\"M. Halldórsson, F. Kuhn, Yannic Maus, Alexandre Nolin\",\"doi\":\"10.4230/LIPIcs.DISC.2020.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an improved randomized CONGEST algorithm for distance-$2$ coloring that uses $\\\\Delta^2+1$ colors and runs in $O(\\\\log n)$ rounds, improving the recent $O(\\\\log \\\\Delta \\\\cdot \\\\log n)$-round algorithm in [Halldorsson, Kuhn, Maus; PODC '20]. We then improve the time complexity to $O(\\\\log \\\\Delta) + 2^{O(\\\\sqrt{\\\\log\\\\log n})}$.\",\"PeriodicalId\":89463,\"journal\":{\"name\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"volume\":\"22 1\",\"pages\":\"39:1-39:17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.DISC.2020.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DISC.2020.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

给出了一种改进的距离-随机化拥塞算法$2$ 使用的着色 $\Delta^2+1$ 颜色和颜色 $O(\log n)$ 回合,近期有所改善 $O(\log \Delta \cdot \log n)$-round算法[Halldorsson, Kuhn, Maus;][20]。然后我们将时间复杂度提高到 $O(\log \Delta) + 2^{O(\sqrt{\log\log n})}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coloring Fast Without Learning Your Neighbors' Colors
We give an improved randomized CONGEST algorithm for distance-$2$ coloring that uses $\Delta^2+1$ colors and runs in $O(\log n)$ rounds, improving the recent $O(\log \Delta \cdot \log n)$-round algorithm in [Halldorsson, Kuhn, Maus; PODC '20]. We then improve the time complexity to $O(\log \Delta) + 2^{O(\sqrt{\log\log n})}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信