解析框架下二维Prandtl-Hartmann方程解的全局适定性

Pub Date : 2022-06-01 DOI:10.4208/jpde.v35.n3.7
Xiaolei Dong null, Yuming Qin
{"title":"解析框架下二维Prandtl-Hartmann方程解的全局适定性","authors":"Xiaolei Dong null, Yuming Qin","doi":"10.4208/jpde.v35.n3.7","DOIUrl":null,"url":null,"abstract":". In this paper, we consider the two-dimensional (2D) Prandtl-Hartmann equations on the half plane and prove the global existence and uniqueness of solutions to 2D Prandtl-Hartmann equations by using the classical energy methods in analytic framework. We prove that the lifespan of the solutions to 2D Prandtl-Hartmann equations can be extended up to T ε (see Theorem 2.1) when the strength of the perturbation is of the order of ε . The difficulty of solving the Prandtl-Hartmann equations in the analytic framework is the loss of x -derivative in the term v ∂ y u . To overcome this difficulty, we introduce the Gaussian weighted Poincar´ e inequality (see Lemma 2.3). Com-pared to the existence and uniqueness of solutions to the classical Prandtl equations where the monotonicity condition of the tangential velocity plays a key role, which is not needed for the 2D Prandtl-Hartmann equations in analytic framework. Besides, the existence and uniqueness of solutions to the 2D MHD boundary layer where the initial tangential magnetic field has a lower bound plays an important role, which is not needed for the 2D Prandtl-Hartmann equations in analytic framework, either.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global Well-Posedness of Solutions to 2D Prandtl-Hartmann Equations in Analytic Framework\",\"authors\":\"Xiaolei Dong null, Yuming Qin\",\"doi\":\"10.4208/jpde.v35.n3.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we consider the two-dimensional (2D) Prandtl-Hartmann equations on the half plane and prove the global existence and uniqueness of solutions to 2D Prandtl-Hartmann equations by using the classical energy methods in analytic framework. We prove that the lifespan of the solutions to 2D Prandtl-Hartmann equations can be extended up to T ε (see Theorem 2.1) when the strength of the perturbation is of the order of ε . The difficulty of solving the Prandtl-Hartmann equations in the analytic framework is the loss of x -derivative in the term v ∂ y u . To overcome this difficulty, we introduce the Gaussian weighted Poincar´ e inequality (see Lemma 2.3). Com-pared to the existence and uniqueness of solutions to the classical Prandtl equations where the monotonicity condition of the tangential velocity plays a key role, which is not needed for the 2D Prandtl-Hartmann equations in analytic framework. Besides, the existence and uniqueness of solutions to the 2D MHD boundary layer where the initial tangential magnetic field has a lower bound plays an important role, which is not needed for the 2D Prandtl-Hartmann equations in analytic framework, either.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v35.n3.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v35.n3.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 本文考虑半平面上二维(2D) Prandtl-Hartmann方程,利用解析框架下的经典能量方法证明了二维Prandtl-Hartmann方程解的整体存在唯一性。证明了当扰动强度为ε阶时,二维Prandtl-Hartmann方程解的寿命可扩展至T ε(见定理2.1)。在解析框架下解普朗特-哈特曼方程的困难在于v∂y u项中x导数的损失。为了克服这个困难,我们引入高斯加权庞加莱不等式(见引理2.3)。与经典Prandtl方程解的存在唯一性相比,其中切向速度的单调性条件起着关键作用,而二维Prandtl- hartmann方程在解析框架下不需要。此外,对于初始切向磁场有下界的二维MHD边界层,解的存在唯一性也起着重要作用,而解析框架下的二维Prandtl-Hartmann方程也不需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global Well-Posedness of Solutions to 2D Prandtl-Hartmann Equations in Analytic Framework
. In this paper, we consider the two-dimensional (2D) Prandtl-Hartmann equations on the half plane and prove the global existence and uniqueness of solutions to 2D Prandtl-Hartmann equations by using the classical energy methods in analytic framework. We prove that the lifespan of the solutions to 2D Prandtl-Hartmann equations can be extended up to T ε (see Theorem 2.1) when the strength of the perturbation is of the order of ε . The difficulty of solving the Prandtl-Hartmann equations in the analytic framework is the loss of x -derivative in the term v ∂ y u . To overcome this difficulty, we introduce the Gaussian weighted Poincar´ e inequality (see Lemma 2.3). Com-pared to the existence and uniqueness of solutions to the classical Prandtl equations where the monotonicity condition of the tangential velocity plays a key role, which is not needed for the 2D Prandtl-Hartmann equations in analytic framework. Besides, the existence and uniqueness of solutions to the 2D MHD boundary layer where the initial tangential magnetic field has a lower bound plays an important role, which is not needed for the 2D Prandtl-Hartmann equations in analytic framework, either.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信