拉格朗日关系的图解演算

Cole Comfort, A. Kissinger
{"title":"拉格朗日关系的图解演算","authors":"Cole Comfort, A. Kissinger","doi":"10.4204/EPTCS.372.24","DOIUrl":null,"url":null,"abstract":"Symplectic vector spaces are the phase spaces of linear mechanical systems. The symplectic form describes, for example, the relation between position and momentum as well as current and voltage. The category of linear Lagrangian relations between symplectic vector spaces is a symmetric monoidal subcategory of relations which gives a semantics for the evolution -- and more generally linear constraints on the evolution -- of various physical systems. We give a new presentation of the category of Lagrangian relations over an arbitrary field as a `doubled' category of linear relations. More precisely, we show that it arises as a variation of Selinger's CPM construction applied to linear relations, where the covariant orthogonal complement functor plays the role of conjugation. Furthermore, for linear relations over prime fields, this corresponds exactly to the CPM construction for a suitable choice of dagger. We can furthermore extend this construction by a single affine shift operator to obtain a category of affine Lagrangian relations. Using this new presentation, we prove the equivalence of the prop of affine Lagrangian relations with the prop of qudit stabilizer theory in odd prime dimensions. We hence obtain a unified graphical language for several disparate process theories, including electrical circuits, Spekkens' toy theory, and odd-prime-dimensional stabilizer quantum circuits.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"1 1","pages":"338-351"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Graphical Calculus for Lagrangian Relations\",\"authors\":\"Cole Comfort, A. Kissinger\",\"doi\":\"10.4204/EPTCS.372.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symplectic vector spaces are the phase spaces of linear mechanical systems. The symplectic form describes, for example, the relation between position and momentum as well as current and voltage. The category of linear Lagrangian relations between symplectic vector spaces is a symmetric monoidal subcategory of relations which gives a semantics for the evolution -- and more generally linear constraints on the evolution -- of various physical systems. We give a new presentation of the category of Lagrangian relations over an arbitrary field as a `doubled' category of linear relations. More precisely, we show that it arises as a variation of Selinger's CPM construction applied to linear relations, where the covariant orthogonal complement functor plays the role of conjugation. Furthermore, for linear relations over prime fields, this corresponds exactly to the CPM construction for a suitable choice of dagger. We can furthermore extend this construction by a single affine shift operator to obtain a category of affine Lagrangian relations. Using this new presentation, we prove the equivalence of the prop of affine Lagrangian relations with the prop of qudit stabilizer theory in odd prime dimensions. We hence obtain a unified graphical language for several disparate process theories, including electrical circuits, Spekkens' toy theory, and odd-prime-dimensional stabilizer quantum circuits.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":\"1 1\",\"pages\":\"338-351\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.372.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.372.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

辛向量空间是线性机械系统的相空间。辛形式描述了,例如,位置和动量以及电流和电压之间的关系。辛向量空间之间的线性拉格朗日关系范畴是关系的对称一元子范畴,它为各种物理系统的演化提供了语义——以及更普遍的演化的线性约束。给出了任意域上的拉格朗日关系范畴作为线性关系的“双重”范畴的一种新的表示。更准确地说,我们证明了它是Selinger的CPM结构应用于线性关系的一种变体,其中协变正交补函子起共轭作用。此外,对于素域上的线性关系,这完全对应于适当选择匕首的CPM结构。我们可以用一个仿射位移算子进一步扩展这个构造,得到一类仿射拉格朗日关系。利用这一新的表述,证明了奇素数维上仿射拉格朗日关系的支持与量子稳定理论的支持的等价性。因此,我们获得了几种不同过程理论的统一图形语言,包括电路,Spekkens的玩具理论和奇素数维稳定量子电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graphical Calculus for Lagrangian Relations
Symplectic vector spaces are the phase spaces of linear mechanical systems. The symplectic form describes, for example, the relation between position and momentum as well as current and voltage. The category of linear Lagrangian relations between symplectic vector spaces is a symmetric monoidal subcategory of relations which gives a semantics for the evolution -- and more generally linear constraints on the evolution -- of various physical systems. We give a new presentation of the category of Lagrangian relations over an arbitrary field as a `doubled' category of linear relations. More precisely, we show that it arises as a variation of Selinger's CPM construction applied to linear relations, where the covariant orthogonal complement functor plays the role of conjugation. Furthermore, for linear relations over prime fields, this corresponds exactly to the CPM construction for a suitable choice of dagger. We can furthermore extend this construction by a single affine shift operator to obtain a category of affine Lagrangian relations. Using this new presentation, we prove the equivalence of the prop of affine Lagrangian relations with the prop of qudit stabilizer theory in odd prime dimensions. We hence obtain a unified graphical language for several disparate process theories, including electrical circuits, Spekkens' toy theory, and odd-prime-dimensional stabilizer quantum circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信