汤普森组基于树的语言复杂性

IF 0.1 Q4 MATHEMATICS
J. Taback, Sharif Younes
{"title":"汤普森组基于树的语言复杂性","authors":"J. Taback, Sharif Younes","doi":"10.1515/gcc-2015-0009","DOIUrl":null,"url":null,"abstract":"Abstract The definition of graph automatic groups by Kharlampovich, Khoussainov and Miasnikov and its extension to 𝒞-graph automatic by Elder and the first author raise the question of whether Thompson's group F is graph automatic. We define a language of normal forms based on the combinatorial “caret types”, which arise when elements of F are considered as pairs of finite rooted binary trees. The language is accepted by a finite state machine with two counters, and forms the basis of a 3-counter graph automatic structure for the group.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"35 1","pages":"135 - 152"},"PeriodicalIF":0.1000,"publicationDate":"2015-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tree-based language complexity of Thompson's group F\",\"authors\":\"J. Taback, Sharif Younes\",\"doi\":\"10.1515/gcc-2015-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The definition of graph automatic groups by Kharlampovich, Khoussainov and Miasnikov and its extension to 𝒞-graph automatic by Elder and the first author raise the question of whether Thompson's group F is graph automatic. We define a language of normal forms based on the combinatorial “caret types”, which arise when elements of F are considered as pairs of finite rooted binary trees. The language is accepted by a finite state machine with two counters, and forms the basis of a 3-counter graph automatic structure for the group.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"35 1\",\"pages\":\"135 - 152\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2015-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2015-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2015-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

Kharlampovich、Khoussainov和Miasnikov对图自动群的定义以及Elder和第一作者将其推广到𝒞-graph automatic提出了Thompson的群F是否为图自动的问题。我们定义了一种基于组合“插入类型”的范式语言,当F的元素被认为是一对有限根二叉树时,就会出现这种类型。该语言被具有两个计数器的有限状态机所接受,并构成了组的3计数器图自动结构的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tree-based language complexity of Thompson's group F
Abstract The definition of graph automatic groups by Kharlampovich, Khoussainov and Miasnikov and its extension to 𝒞-graph automatic by Elder and the first author raise the question of whether Thompson's group F is graph automatic. We define a language of normal forms based on the combinatorial “caret types”, which arise when elements of F are considered as pairs of finite rooted binary trees. The language is accepted by a finite state machine with two counters, and forms the basis of a 3-counter graph automatic structure for the group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信