{"title":"从游戏视频中生成游戏关卡","authors":"Matthew J. Guzdial, Mark O. Riedl","doi":"10.1609/aiide.v12i1.12861","DOIUrl":null,"url":null,"abstract":"\n \n We present an unsupervised process to generate full video game levels from a model trained on gameplay video. The model represents probabilistic relationships between shapes properties, and relates the relationships to stylistic variance within a domain. We utilize the classic platformer game Super Mario Bros. to evaluate this process due to its highly-regarded level design. We evaluate the output in comparison to other data-driven level generation techniques via a user study and demonstrate its ability to produce novel output more stylistically similar to exemplar input.\n \n","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"24 1","pages":"44-50"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Game Level Generation from Gameplay Videos\",\"authors\":\"Matthew J. Guzdial, Mark O. Riedl\",\"doi\":\"10.1609/aiide.v12i1.12861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n We present an unsupervised process to generate full video game levels from a model trained on gameplay video. The model represents probabilistic relationships between shapes properties, and relates the relationships to stylistic variance within a domain. We utilize the classic platformer game Super Mario Bros. to evaluate this process due to its highly-regarded level design. We evaluate the output in comparison to other data-driven level generation techniques via a user study and demonstrate its ability to produce novel output more stylistically similar to exemplar input.\\n \\n\",\"PeriodicalId\":92576,\"journal\":{\"name\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"volume\":\"24 1\",\"pages\":\"44-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v12i1.12861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v12i1.12861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present an unsupervised process to generate full video game levels from a model trained on gameplay video. The model represents probabilistic relationships between shapes properties, and relates the relationships to stylistic variance within a domain. We utilize the classic platformer game Super Mario Bros. to evaluate this process due to its highly-regarded level design. We evaluate the output in comparison to other data-driven level generation techniques via a user study and demonstrate its ability to produce novel output more stylistically similar to exemplar input.