Simin Sharifi, Solmaz Maleki-Dizaj, S. Shahi, Mahsa Mahdilouy
{"title":"纳米羟基磷灰石基实验硅酸钙水泥作为根修复材料的合成、表征和评价","authors":"Simin Sharifi, Solmaz Maleki-Dizaj, S. Shahi, Mahsa Mahdilouy","doi":"10.17126/joralres.2022.007","DOIUrl":null,"url":null,"abstract":"Introduction: This study aimed to prepare a new root repair material including Portland cement, bismuth oxide, and nano-hydroxyapatite and analyze its physicochemical properties and its effects on the proliferation and differentiation of human dental pulp stem cells (hDPSCs). Material and Methods: Bismuth oxide as a radiopaque component and nano-hydroxyapatite particles were added to white Portland cement at 20% and 5% weight ratio, respectively. Characterization of the prepared cement was done using con-ventional methods. To examine the bioactivity of this new material, atomic absorption spectroscopy (AAS) was used for the investigation of the rate of calcium ions dissolution in simulated body fluid media. The viability of hDPSCs was assessed by an MTT assay after 1, 3 and 7 days. The odontogenic potential of this substance was evaluated by measuring alkaline phosphatase activity and alizarin red S staining. Results: Based on the bioactivity results, the cement presented high bio-activity, corroborating sufficiently with the calcium release patterns. The cell viability was significantly increased in new root repair ma-terial containing hydroxyapatite nanoparticles after 3 and 7 days (p<0.05). Conclusion: Moreover, alkaline phosphatase activity increased over 7 days in all experimental groups. The new cement containing nano-hydroxyapatite particles could be a good root repair material.","PeriodicalId":16625,"journal":{"name":"Journal of Oral Research","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis, characterization, and evaluation of nano-hydroxyapatite based experimental calcium silicate cement as a root repair material\",\"authors\":\"Simin Sharifi, Solmaz Maleki-Dizaj, S. Shahi, Mahsa Mahdilouy\",\"doi\":\"10.17126/joralres.2022.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: This study aimed to prepare a new root repair material including Portland cement, bismuth oxide, and nano-hydroxyapatite and analyze its physicochemical properties and its effects on the proliferation and differentiation of human dental pulp stem cells (hDPSCs). Material and Methods: Bismuth oxide as a radiopaque component and nano-hydroxyapatite particles were added to white Portland cement at 20% and 5% weight ratio, respectively. Characterization of the prepared cement was done using con-ventional methods. To examine the bioactivity of this new material, atomic absorption spectroscopy (AAS) was used for the investigation of the rate of calcium ions dissolution in simulated body fluid media. The viability of hDPSCs was assessed by an MTT assay after 1, 3 and 7 days. The odontogenic potential of this substance was evaluated by measuring alkaline phosphatase activity and alizarin red S staining. Results: Based on the bioactivity results, the cement presented high bio-activity, corroborating sufficiently with the calcium release patterns. The cell viability was significantly increased in new root repair ma-terial containing hydroxyapatite nanoparticles after 3 and 7 days (p<0.05). Conclusion: Moreover, alkaline phosphatase activity increased over 7 days in all experimental groups. The new cement containing nano-hydroxyapatite particles could be a good root repair material.\",\"PeriodicalId\":16625,\"journal\":{\"name\":\"Journal of Oral Research\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17126/joralres.2022.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17126/joralres.2022.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Dentistry","Score":null,"Total":0}
Synthesis, characterization, and evaluation of nano-hydroxyapatite based experimental calcium silicate cement as a root repair material
Introduction: This study aimed to prepare a new root repair material including Portland cement, bismuth oxide, and nano-hydroxyapatite and analyze its physicochemical properties and its effects on the proliferation and differentiation of human dental pulp stem cells (hDPSCs). Material and Methods: Bismuth oxide as a radiopaque component and nano-hydroxyapatite particles were added to white Portland cement at 20% and 5% weight ratio, respectively. Characterization of the prepared cement was done using con-ventional methods. To examine the bioactivity of this new material, atomic absorption spectroscopy (AAS) was used for the investigation of the rate of calcium ions dissolution in simulated body fluid media. The viability of hDPSCs was assessed by an MTT assay after 1, 3 and 7 days. The odontogenic potential of this substance was evaluated by measuring alkaline phosphatase activity and alizarin red S staining. Results: Based on the bioactivity results, the cement presented high bio-activity, corroborating sufficiently with the calcium release patterns. The cell viability was significantly increased in new root repair ma-terial containing hydroxyapatite nanoparticles after 3 and 7 days (p<0.05). Conclusion: Moreover, alkaline phosphatase activity increased over 7 days in all experimental groups. The new cement containing nano-hydroxyapatite particles could be a good root repair material.
期刊介绍:
Journal of Oral Research which is published every two month, is devoted to the dissemination of knowledge in oral and craniofacial sciences, including: oral surgery and medicine and rehabilitation, craniofacial surgery, dentistry, orofacial pain and motor disorders, head and neck surgery, speech and swallowing disorders, and other related disciplines. Journal of Oral Research publishes original research articles and brief communications, systematic reviews, study protocols, research hypotheses, reports of cases, comments and perspectives. Indexed by Scopus, DOAJ, LILACS, Latindex, IMBIOMED, DIALNET,REDIB and Google Scholar. Journal of Oral Research is a member of COPE.