关于完全莱布尼兹代数

Sh. A. Ayupov, A. Khudoyberdiyev, Z. Shermatova
{"title":"关于完全莱布尼兹代数","authors":"Sh. A. Ayupov, A. Khudoyberdiyev, Z. Shermatova","doi":"10.1142/s0218196722500138","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the so-called complete Leibniz algebras. We construct some complete Leibniz algebras with complete radical and prove that the direct sum of complete Leibniz algebras is also complete. It is known that a Lie algebra with a complete ideal is split. We discuss the analogs of this result for the Leibniz algebras and show that it is true for some special classes of Leibniz algebras. Finally, we consider derivations of Leibniz algebras and present some classes of Leibniz algebras which are not complete, since they admit outer derivation.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"3 1","pages":"265-288"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On complete Leibniz algebras\",\"authors\":\"Sh. A. Ayupov, A. Khudoyberdiyev, Z. Shermatova\",\"doi\":\"10.1142/s0218196722500138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the so-called complete Leibniz algebras. We construct some complete Leibniz algebras with complete radical and prove that the direct sum of complete Leibniz algebras is also complete. It is known that a Lie algebra with a complete ideal is split. We discuss the analogs of this result for the Leibniz algebras and show that it is true for some special classes of Leibniz algebras. Finally, we consider derivations of Leibniz algebras and present some classes of Leibniz algebras which are not complete, since they admit outer derivation.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"3 1\",\"pages\":\"265-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于研究所谓的完全莱布尼兹代数。构造了具有完全根的完全莱布尼兹代数,并证明了完全莱布尼兹代数的直和也是完全的。已知具有完全理想的李代数是分裂的。我们讨论了这一结果在莱布尼兹代数上的类似情形,并证明了它对某些特殊的莱布尼兹代数是成立的。最后,我们考虑了莱布尼兹代数的导数,并给出了一些不完备的莱布尼兹代数,因为它们允许外导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On complete Leibniz algebras
This paper is devoted to the so-called complete Leibniz algebras. We construct some complete Leibniz algebras with complete radical and prove that the direct sum of complete Leibniz algebras is also complete. It is known that a Lie algebra with a complete ideal is split. We discuss the analogs of this result for the Leibniz algebras and show that it is true for some special classes of Leibniz algebras. Finally, we consider derivations of Leibniz algebras and present some classes of Leibniz algebras which are not complete, since they admit outer derivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信