{"title":"在分子相互作用的背景下,如何解决Drago的四个参数问题","authors":"H. Tran, B. Michel","doi":"10.6000/1929-5030.2019.08.02","DOIUrl":null,"url":null,"abstract":"Next, the seven equalities of the type V∂h / nj = (Eaj Ebj + Caj Cbj) (kJ / mol) with j = 1,7 are put together with 21 equalities of the type ΔEint = (Eaj Ebj+1 + Caj Cbj+1) + (Eaj+1 Ebj + Caj+1 Cbj). This will generate a system comprising 28 equations for 28 unknown parameters. The resolution of this system will afford the 28 sought values of Drago’s four parameters Ea, Eb, Ca, Cb for the seven selected substances.","PeriodicalId":15165,"journal":{"name":"Journal of Applied Solution Chemistry and Modeling","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How to Resolve the Problem of Drago's Four Parameters in the Context of Molecular Interactions\",\"authors\":\"H. Tran, B. Michel\",\"doi\":\"10.6000/1929-5030.2019.08.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next, the seven equalities of the type V∂h / nj = (Eaj Ebj + Caj Cbj) (kJ / mol) with j = 1,7 are put together with 21 equalities of the type ΔEint = (Eaj Ebj+1 + Caj Cbj+1) + (Eaj+1 Ebj + Caj+1 Cbj). This will generate a system comprising 28 equations for 28 unknown parameters. The resolution of this system will afford the 28 sought values of Drago’s four parameters Ea, Eb, Ca, Cb for the seven selected substances.\",\"PeriodicalId\":15165,\"journal\":{\"name\":\"Journal of Applied Solution Chemistry and Modeling\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Solution Chemistry and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-5030.2019.08.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Solution Chemistry and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-5030.2019.08.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to Resolve the Problem of Drago's Four Parameters in the Context of Molecular Interactions
Next, the seven equalities of the type V∂h / nj = (Eaj Ebj + Caj Cbj) (kJ / mol) with j = 1,7 are put together with 21 equalities of the type ΔEint = (Eaj Ebj+1 + Caj Cbj+1) + (Eaj+1 Ebj + Caj+1 Cbj). This will generate a system comprising 28 equations for 28 unknown parameters. The resolution of this system will afford the 28 sought values of Drago’s four parameters Ea, Eb, Ca, Cb for the seven selected substances.