一阶方法稳定性多项式设计的数值算法

E. Novikov, M. V. Rybkov, A. Novikov
{"title":"一阶方法稳定性多项式设计的数值算法","authors":"E. Novikov, M. V. Rybkov, A. Novikov","doi":"10.3384/ECP17142979","DOIUrl":null,"url":null,"abstract":"The algorithm for coefficients determination for stability polynomials of degree up to m = 35 is developed. The coefficients correspond to explicit Runge-Kutta methods of the first accuracy order. Dependence between values of a polynomial at the points of extremum and both size and form of a stability domain is shown. Numerical results are given.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Algorithm for Design of Stability Polynomials for the First Order Methods\",\"authors\":\"E. Novikov, M. V. Rybkov, A. Novikov\",\"doi\":\"10.3384/ECP17142979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The algorithm for coefficients determination for stability polynomials of degree up to m = 35 is developed. The coefficients correspond to explicit Runge-Kutta methods of the first accuracy order. Dependence between values of a polynomial at the points of extremum and both size and form of a stability domain is shown. Numerical results are given.\",\"PeriodicalId\":56990,\"journal\":{\"name\":\"建模与仿真(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"建模与仿真(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3384/ECP17142979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3384/ECP17142979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了m = 35阶稳定多项式的系数确定算法。这些系数对应于第一精度阶的显式龙格-库塔方法。给出了多项式在极值点处的值与稳定域的大小和形式之间的关系。给出了数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Algorithm for Design of Stability Polynomials for the First Order Methods
The algorithm for coefficients determination for stability polynomials of degree up to m = 35 is developed. The coefficients correspond to explicit Runge-Kutta methods of the first accuracy order. Dependence between values of a polynomial at the points of extremum and both size and form of a stability domain is shown. Numerical results are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信