{"title":"发出叮当声","authors":"Zhe Chen, Andrew G. Howe, H. T. Blair, J. Cong","doi":"10.1145/3218603.3218637","DOIUrl":null,"url":null,"abstract":"Neurofeedback device measures brain wave and generates feedback signal in real time and can be employed as treatments for various neurological diseases. Such devices require high energy efficiency because they need to be worn or surgically implanted into patients and support long battery life time. In this paper, we propose CLINK, a compact LSTM inference kernel, to achieve high energy efficient EEG signal processing for neurofeedback devices. The LSTM kernel can approximate conventional filtering functions while saving 84% computational operations. Based on this method, we propose energy efficient customizable circuits for realizing CLINK function. We demonstrated a 128-channel EEG processing engine on Zynq-7030 with 0.8 W, and the scaled up 2048-channel evaluation on Virtex-VU9P shows that our design can achieve 215x and 7.9x energy efficiency compared to highly optimized implementations on E5-2620 CPU and K80 GPU, respectively. We carried out the CLINK design in a 15-nm technology, and synthesis results show that it can achieve 272.8 pJ/inference energy efficiency, which further outperforms our design on the Virtex-VU9P by 99x.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"CLINK\",\"authors\":\"Zhe Chen, Andrew G. Howe, H. T. Blair, J. Cong\",\"doi\":\"10.1145/3218603.3218637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurofeedback device measures brain wave and generates feedback signal in real time and can be employed as treatments for various neurological diseases. Such devices require high energy efficiency because they need to be worn or surgically implanted into patients and support long battery life time. In this paper, we propose CLINK, a compact LSTM inference kernel, to achieve high energy efficient EEG signal processing for neurofeedback devices. The LSTM kernel can approximate conventional filtering functions while saving 84% computational operations. Based on this method, we propose energy efficient customizable circuits for realizing CLINK function. We demonstrated a 128-channel EEG processing engine on Zynq-7030 with 0.8 W, and the scaled up 2048-channel evaluation on Virtex-VU9P shows that our design can achieve 215x and 7.9x energy efficiency compared to highly optimized implementations on E5-2620 CPU and K80 GPU, respectively. We carried out the CLINK design in a 15-nm technology, and synthesis results show that it can achieve 272.8 pJ/inference energy efficiency, which further outperforms our design on the Virtex-VU9P by 99x.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218603.3218637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neurofeedback device measures brain wave and generates feedback signal in real time and can be employed as treatments for various neurological diseases. Such devices require high energy efficiency because they need to be worn or surgically implanted into patients and support long battery life time. In this paper, we propose CLINK, a compact LSTM inference kernel, to achieve high energy efficient EEG signal processing for neurofeedback devices. The LSTM kernel can approximate conventional filtering functions while saving 84% computational operations. Based on this method, we propose energy efficient customizable circuits for realizing CLINK function. We demonstrated a 128-channel EEG processing engine on Zynq-7030 with 0.8 W, and the scaled up 2048-channel evaluation on Virtex-VU9P shows that our design can achieve 215x and 7.9x energy efficiency compared to highly optimized implementations on E5-2620 CPU and K80 GPU, respectively. We carried out the CLINK design in a 15-nm technology, and synthesis results show that it can achieve 272.8 pJ/inference energy efficiency, which further outperforms our design on the Virtex-VU9P by 99x.