{"title":"Se80−xTe20Bix (x= 6,12)玻璃的交流电导率和介电弛豫","authors":"D. Deepika, Hukum Singh","doi":"10.13036/17533562.60.6.014","DOIUrl":null,"url":null,"abstract":"The present paper reports the ac conductivity and dielectric relaxation of Se80−xTe20Bix (x=6, 12) glasses at various temperatures and frequencies. It was found that ac conductivity increases on increase of frequency, temperature as well as Bi content. The increase in conductivity is due to the formation of lower energy Se–Bi and Te–Bi bonds which takes the system to a stable lower energy configuration. The values of frequency exponent (s) were calculated and it was found that samples obey CBH model of conduction. Density of states (N(Ef)) near the fermi level were calculated at different temperatures and it was found that addition of Bi increases the number of localised states in the tails which leads to increase in ac conductivity. Further, it was found that dielectric parameters increase with increase in temperature. However, a decrease in both dielectric constant (ε′) and dielectric loss ((ε″) was observed with increase in frequency. Beside this, dielectric relaxation time (τ) and activation energy of relaxation (∆Eτ) were also determined for both the samples under study and was found to be lower for Se68Te20Bi12 glass.","PeriodicalId":49696,"journal":{"name":"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B","volume":"49 1","pages":"222-230"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AC conductivity and dielectric relaxation of Se80−xTe20Bix (x=6, 12) glasses\",\"authors\":\"D. Deepika, Hukum Singh\",\"doi\":\"10.13036/17533562.60.6.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper reports the ac conductivity and dielectric relaxation of Se80−xTe20Bix (x=6, 12) glasses at various temperatures and frequencies. It was found that ac conductivity increases on increase of frequency, temperature as well as Bi content. The increase in conductivity is due to the formation of lower energy Se–Bi and Te–Bi bonds which takes the system to a stable lower energy configuration. The values of frequency exponent (s) were calculated and it was found that samples obey CBH model of conduction. Density of states (N(Ef)) near the fermi level were calculated at different temperatures and it was found that addition of Bi increases the number of localised states in the tails which leads to increase in ac conductivity. Further, it was found that dielectric parameters increase with increase in temperature. However, a decrease in both dielectric constant (ε′) and dielectric loss ((ε″) was observed with increase in frequency. Beside this, dielectric relaxation time (τ) and activation energy of relaxation (∆Eτ) were also determined for both the samples under study and was found to be lower for Se68Te20Bi12 glass.\",\"PeriodicalId\":49696,\"journal\":{\"name\":\"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B\",\"volume\":\"49 1\",\"pages\":\"222-230\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.13036/17533562.60.6.014\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.13036/17533562.60.6.014","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
AC conductivity and dielectric relaxation of Se80−xTe20Bix (x=6, 12) glasses
The present paper reports the ac conductivity and dielectric relaxation of Se80−xTe20Bix (x=6, 12) glasses at various temperatures and frequencies. It was found that ac conductivity increases on increase of frequency, temperature as well as Bi content. The increase in conductivity is due to the formation of lower energy Se–Bi and Te–Bi bonds which takes the system to a stable lower energy configuration. The values of frequency exponent (s) were calculated and it was found that samples obey CBH model of conduction. Density of states (N(Ef)) near the fermi level were calculated at different temperatures and it was found that addition of Bi increases the number of localised states in the tails which leads to increase in ac conductivity. Further, it was found that dielectric parameters increase with increase in temperature. However, a decrease in both dielectric constant (ε′) and dielectric loss ((ε″) was observed with increase in frequency. Beside this, dielectric relaxation time (τ) and activation energy of relaxation (∆Eτ) were also determined for both the samples under study and was found to be lower for Se68Te20Bi12 glass.
期刊介绍:
Physics and Chemistry of Glasses accepts papers of a more purely scientific interest concerned with glasses and their structure or properties. Thus the subject of a paper will normally determine the journal in which it will be published.