满足恒等式$[x^n]的相对自由群的自同构Y] = 1$

Sh. A. Stepanyan
{"title":"满足恒等式$[x^n]的相对自由群的自同构Y] = 1$","authors":"Sh. A. Stepanyan","doi":"10.46991/pysu:a/2017.51.2.196","DOIUrl":null,"url":null,"abstract":"We prove that if an automorphism j of the relatively free group of the group variety, defined by the identity relation $[x^n; y] = 1$, acts identically on its center, then j has either infinite or odd order, where $n\\geq 665$ is an arbitrary odd number.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON AUTOMORPHISMS OF THE RELATIVELY FREE GROUPS SATISFYING THE IDENTITY $[x^n; y] = 1$\",\"authors\":\"Sh. A. Stepanyan\",\"doi\":\"10.46991/pysu:a/2017.51.2.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if an automorphism j of the relatively free group of the group variety, defined by the identity relation $[x^n; y] = 1$, acts identically on its center, then j has either infinite or odd order, where $n\\\\geq 665$ is an arbitrary odd number.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2017.51.2.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2017.51.2.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

证明了由单位关系$[x^n; y] = 1$定义的群变异的相对自由群的一个自同构j对其中心作用相同,则j具有无限阶或奇阶,其中$n\geq 665$为任意奇数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON AUTOMORPHISMS OF THE RELATIVELY FREE GROUPS SATISFYING THE IDENTITY $[x^n; y] = 1$
We prove that if an automorphism j of the relatively free group of the group variety, defined by the identity relation $[x^n; y] = 1$, acts identically on its center, then j has either infinite or odd order, where $n\geq 665$ is an arbitrary odd number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信