不同生长速率和呼吸速率下海洋微生物群落和船纹藻杆菌连续培养的B12产量

IF 1.6 4区 环境科学与生态学 Q3 ECOLOGY
J. Villegas-Mendoza, R. Cajal-Medrano, H. Maske
{"title":"不同生长速率和呼吸速率下海洋微生物群落和船纹藻杆菌连续培养的B12产量","authors":"J. Villegas-Mendoza, R. Cajal-Medrano, H. Maske","doi":"10.3354/ame01921","DOIUrl":null,"url":null,"abstract":"In situ dissolved B12 concentration in marine ecosystems is controlled by the balance between rates of release of B12 by prokaryotes, uptake by prokaryotes and eukaryotes, and abiotic degradation. We used chemostats at a range of specific growth rates (μ, d−1; 0.1 to 1) with natural communities of prokaryotes and monospecific cultures of a B12 producer, Dinoroseobacter shibae. We measured the dissolved B12 concentration produced in the culture (B12-d), the B12 in the particulate fraction (B12-p), cell concentration, respiration rate, particulate organic carbon and nitrogen (POC, PON), and the 16S amplicon composition. Total dissolved B12 concentrations (0.92 to 4.90 pmol l−1) were comparable to those found in the surface ocean. B12-p concentration was 6 to 35 times higher than B12-d. B12-d, B12-p, and community composition showed no relation to μ for either natural populations or D. shibae. The chemostats allowed calculation of the rates of production: B12-d (0.34 ± 0.28 pmol l−1 d−1) and B12-p (5.65 ± 2.34 pmol l−1 d−1), and the B12 cell quota (900 to 3300 molecules cell−1). In multispecies and D. shibae cultures, B12 production rates per cell in creased with respiration rates (volumetric or per cell), and with rates of cellular organic carbon and nitrogen production. Rates increased with μ, but not the concentrations of B12-d or of B12-p. To understand the physiological and ecological dynamics of B12, concentrations alone are insufficient since they do not provide rates, which are important in understanding the dynamics between producers and consumers.","PeriodicalId":8112,"journal":{"name":"Aquatic Microbial Ecology","volume":"161 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"B12 production by marine microbial communities and Dinoroseobacter shibae continuous cultures under different growth and respiration rates\",\"authors\":\"J. Villegas-Mendoza, R. Cajal-Medrano, H. Maske\",\"doi\":\"10.3354/ame01921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In situ dissolved B12 concentration in marine ecosystems is controlled by the balance between rates of release of B12 by prokaryotes, uptake by prokaryotes and eukaryotes, and abiotic degradation. We used chemostats at a range of specific growth rates (μ, d−1; 0.1 to 1) with natural communities of prokaryotes and monospecific cultures of a B12 producer, Dinoroseobacter shibae. We measured the dissolved B12 concentration produced in the culture (B12-d), the B12 in the particulate fraction (B12-p), cell concentration, respiration rate, particulate organic carbon and nitrogen (POC, PON), and the 16S amplicon composition. Total dissolved B12 concentrations (0.92 to 4.90 pmol l−1) were comparable to those found in the surface ocean. B12-p concentration was 6 to 35 times higher than B12-d. B12-d, B12-p, and community composition showed no relation to μ for either natural populations or D. shibae. The chemostats allowed calculation of the rates of production: B12-d (0.34 ± 0.28 pmol l−1 d−1) and B12-p (5.65 ± 2.34 pmol l−1 d−1), and the B12 cell quota (900 to 3300 molecules cell−1). In multispecies and D. shibae cultures, B12 production rates per cell in creased with respiration rates (volumetric or per cell), and with rates of cellular organic carbon and nitrogen production. Rates increased with μ, but not the concentrations of B12-d or of B12-p. To understand the physiological and ecological dynamics of B12, concentrations alone are insufficient since they do not provide rates, which are important in understanding the dynamics between producers and consumers.\",\"PeriodicalId\":8112,\"journal\":{\"name\":\"Aquatic Microbial Ecology\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Microbial Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3354/ame01921\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Microbial Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/ame01921","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

海洋生态系统中原位溶解B12浓度受原核生物释放B12速率、原核生物和真核生物摄取B12速率以及非生物降解速率之间的平衡控制。我们使用了特定生长速率范围内的趋化剂(μ, d−1;0.1至1),原核生物的自然群落和B12产生者shibae Dinoroseobacter的单特异性培养。我们测量了培养物中产生的溶解B12浓度(B12-d),颗粒部分中的B12 (B12-p),细胞浓度,呼吸速率,颗粒有机碳和氮(POC, PON)以及16S扩增子组成。总溶解B12浓度(0.92至4.90 pmol l−1)与海洋表面的浓度相当。B12-p浓度比B12-d高6 ~ 35倍。在自然种群和shibaa种群中,B12-d、B12-p和群落组成与μ均无相关性。该化学调节器允许计算生产速率:B12-d(0.34±0.28 pmol l−1 d−1)和B12-p(5.65±2.34 pmol l−1 d−1),以及B12细胞配额(900至3300分子细胞−1)。在多物种和shibae培养中,每个细胞的B12产量随呼吸速率(体积或每个细胞)以及细胞有机碳和氮产量的增加而增加。B12-d和B12-p的浓度随μ的增加而增加,但B12-d和B12-p的浓度不增加。要了解B12的生理和生态动态,仅靠浓度是不够的,因为它们不能提供速率,而速率对于了解生产者和消费者之间的动态非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
B12 production by marine microbial communities and Dinoroseobacter shibae continuous cultures under different growth and respiration rates
In situ dissolved B12 concentration in marine ecosystems is controlled by the balance between rates of release of B12 by prokaryotes, uptake by prokaryotes and eukaryotes, and abiotic degradation. We used chemostats at a range of specific growth rates (μ, d−1; 0.1 to 1) with natural communities of prokaryotes and monospecific cultures of a B12 producer, Dinoroseobacter shibae. We measured the dissolved B12 concentration produced in the culture (B12-d), the B12 in the particulate fraction (B12-p), cell concentration, respiration rate, particulate organic carbon and nitrogen (POC, PON), and the 16S amplicon composition. Total dissolved B12 concentrations (0.92 to 4.90 pmol l−1) were comparable to those found in the surface ocean. B12-p concentration was 6 to 35 times higher than B12-d. B12-d, B12-p, and community composition showed no relation to μ for either natural populations or D. shibae. The chemostats allowed calculation of the rates of production: B12-d (0.34 ± 0.28 pmol l−1 d−1) and B12-p (5.65 ± 2.34 pmol l−1 d−1), and the B12 cell quota (900 to 3300 molecules cell−1). In multispecies and D. shibae cultures, B12 production rates per cell in creased with respiration rates (volumetric or per cell), and with rates of cellular organic carbon and nitrogen production. Rates increased with μ, but not the concentrations of B12-d or of B12-p. To understand the physiological and ecological dynamics of B12, concentrations alone are insufficient since they do not provide rates, which are important in understanding the dynamics between producers and consumers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Microbial Ecology
Aquatic Microbial Ecology 环境科学-海洋与淡水生物学
CiteScore
3.30
自引率
0.00%
发文量
8
审稿时长
3.0 months
期刊介绍: AME is international and interdisciplinary. It presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see AME 27:209), Opinion Pieces (previously called ''As I See It'') and AME Specials. For details consult the Guidelines for Authors. Papers may be concerned with: Tolerances and responses of microorganisms to variations in abiotic and biotic components of their environment; microbial life under extreme environmental conditions (climate, temperature, pressure, osmolarity, redox, etc.). Role of aquatic microorganisms in the production, transformation and decomposition of organic matter; flow patterns of energy and matter as these pass through microorganisms; population dynamics; trophic interrelationships; modelling, both theoretical and via computer simulation, of individual microorganisms and microbial populations; biodiversity. Absorption and transformation of inorganic material; synthesis and transformation of organic material (autotrophic and heterotrophic); non-genetic and genetic adaptation; behaviour; molecular microbial ecology; symbioses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信