{"title":"不同生长速率和呼吸速率下海洋微生物群落和船纹藻杆菌连续培养的B12产量","authors":"J. Villegas-Mendoza, R. Cajal-Medrano, H. Maske","doi":"10.3354/ame01921","DOIUrl":null,"url":null,"abstract":"In situ dissolved B12 concentration in marine ecosystems is controlled by the balance between rates of release of B12 by prokaryotes, uptake by prokaryotes and eukaryotes, and abiotic degradation. We used chemostats at a range of specific growth rates (μ, d−1; 0.1 to 1) with natural communities of prokaryotes and monospecific cultures of a B12 producer, Dinoroseobacter shibae. We measured the dissolved B12 concentration produced in the culture (B12-d), the B12 in the particulate fraction (B12-p), cell concentration, respiration rate, particulate organic carbon and nitrogen (POC, PON), and the 16S amplicon composition. Total dissolved B12 concentrations (0.92 to 4.90 pmol l−1) were comparable to those found in the surface ocean. B12-p concentration was 6 to 35 times higher than B12-d. B12-d, B12-p, and community composition showed no relation to μ for either natural populations or D. shibae. The chemostats allowed calculation of the rates of production: B12-d (0.34 ± 0.28 pmol l−1 d−1) and B12-p (5.65 ± 2.34 pmol l−1 d−1), and the B12 cell quota (900 to 3300 molecules cell−1). In multispecies and D. shibae cultures, B12 production rates per cell in creased with respiration rates (volumetric or per cell), and with rates of cellular organic carbon and nitrogen production. Rates increased with μ, but not the concentrations of B12-d or of B12-p. To understand the physiological and ecological dynamics of B12, concentrations alone are insufficient since they do not provide rates, which are important in understanding the dynamics between producers and consumers.","PeriodicalId":8112,"journal":{"name":"Aquatic Microbial Ecology","volume":"161 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"B12 production by marine microbial communities and Dinoroseobacter shibae continuous cultures under different growth and respiration rates\",\"authors\":\"J. Villegas-Mendoza, R. Cajal-Medrano, H. Maske\",\"doi\":\"10.3354/ame01921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In situ dissolved B12 concentration in marine ecosystems is controlled by the balance between rates of release of B12 by prokaryotes, uptake by prokaryotes and eukaryotes, and abiotic degradation. We used chemostats at a range of specific growth rates (μ, d−1; 0.1 to 1) with natural communities of prokaryotes and monospecific cultures of a B12 producer, Dinoroseobacter shibae. We measured the dissolved B12 concentration produced in the culture (B12-d), the B12 in the particulate fraction (B12-p), cell concentration, respiration rate, particulate organic carbon and nitrogen (POC, PON), and the 16S amplicon composition. Total dissolved B12 concentrations (0.92 to 4.90 pmol l−1) were comparable to those found in the surface ocean. B12-p concentration was 6 to 35 times higher than B12-d. B12-d, B12-p, and community composition showed no relation to μ for either natural populations or D. shibae. The chemostats allowed calculation of the rates of production: B12-d (0.34 ± 0.28 pmol l−1 d−1) and B12-p (5.65 ± 2.34 pmol l−1 d−1), and the B12 cell quota (900 to 3300 molecules cell−1). In multispecies and D. shibae cultures, B12 production rates per cell in creased with respiration rates (volumetric or per cell), and with rates of cellular organic carbon and nitrogen production. Rates increased with μ, but not the concentrations of B12-d or of B12-p. To understand the physiological and ecological dynamics of B12, concentrations alone are insufficient since they do not provide rates, which are important in understanding the dynamics between producers and consumers.\",\"PeriodicalId\":8112,\"journal\":{\"name\":\"Aquatic Microbial Ecology\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Microbial Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3354/ame01921\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Microbial Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/ame01921","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
B12 production by marine microbial communities and Dinoroseobacter shibae continuous cultures under different growth and respiration rates
In situ dissolved B12 concentration in marine ecosystems is controlled by the balance between rates of release of B12 by prokaryotes, uptake by prokaryotes and eukaryotes, and abiotic degradation. We used chemostats at a range of specific growth rates (μ, d−1; 0.1 to 1) with natural communities of prokaryotes and monospecific cultures of a B12 producer, Dinoroseobacter shibae. We measured the dissolved B12 concentration produced in the culture (B12-d), the B12 in the particulate fraction (B12-p), cell concentration, respiration rate, particulate organic carbon and nitrogen (POC, PON), and the 16S amplicon composition. Total dissolved B12 concentrations (0.92 to 4.90 pmol l−1) were comparable to those found in the surface ocean. B12-p concentration was 6 to 35 times higher than B12-d. B12-d, B12-p, and community composition showed no relation to μ for either natural populations or D. shibae. The chemostats allowed calculation of the rates of production: B12-d (0.34 ± 0.28 pmol l−1 d−1) and B12-p (5.65 ± 2.34 pmol l−1 d−1), and the B12 cell quota (900 to 3300 molecules cell−1). In multispecies and D. shibae cultures, B12 production rates per cell in creased with respiration rates (volumetric or per cell), and with rates of cellular organic carbon and nitrogen production. Rates increased with μ, but not the concentrations of B12-d or of B12-p. To understand the physiological and ecological dynamics of B12, concentrations alone are insufficient since they do not provide rates, which are important in understanding the dynamics between producers and consumers.
期刊介绍:
AME is international and interdisciplinary. It presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see AME 27:209), Opinion Pieces (previously called ''As I See It'') and AME Specials. For details consult the Guidelines for Authors. Papers may be concerned with:
Tolerances and responses of microorganisms to variations in abiotic and biotic components of their environment; microbial life under extreme environmental conditions (climate, temperature, pressure, osmolarity, redox, etc.).
Role of aquatic microorganisms in the production, transformation and decomposition of organic matter; flow patterns of energy and matter as these pass through microorganisms; population dynamics; trophic interrelationships; modelling, both theoretical and via computer simulation, of individual microorganisms and microbial populations; biodiversity.
Absorption and transformation of inorganic material; synthesis and transformation of organic material (autotrophic and heterotrophic); non-genetic and genetic adaptation; behaviour; molecular microbial ecology; symbioses.