{"title":"DC-DC变换器模型的定量分析:基于太阳能光伏发电储能的统计视角","authors":"S. R. Hole, Agam Das Goswami","doi":"10.1515/ehs-2021-0027","DOIUrl":null,"url":null,"abstract":"Abstract Photovoltaic (PV) systems have paved their way into general households due to their high efficiency, low deployment cost and huge power savings. These advantages combined with Government incentives further assist in wide-scale adoptability of the solar powered systems. PV systems generate direct current (DC) outputs, which needs to be converted into alternating current (AC) via inverters. The efficiency of inverter design decides the overall efficiency of the PV system, which allows effective utilization of the solar power for feeding to grid or for local usage. In order to design effective inverter models, a large number of electrical configurations are designed by researchers over the years. These include, stand-alone inverters, grid-tie inverters, battery backup inverters and hybrid inverters, each of which are further divided into multiple sub-categories. Each of these sub-categories have a different application, for instance, string-converters are used for moderate power applications up-to 150k W, while central converters are used for high power applications above 80k W, etc. Apart from power capabilities, these designs vary in terms of efficiency of conversion, usability, cost, etc. Due to so many parametric variations, effective selection of these converters for a given PV application becomes ambiguous. In order to reduce this ambiguity, the underlying text statistically evaluates performance of some of the most efficient PV converter models, and compares them on the basis of power capabilities, accuracy of conversion, converter used, control model used, etc. This review will assist researchers and system designers to select the best suited models for their given applications, and thus reduce the time needed for efficient PV inverter system design. This text also recommends future research which can be adopted for improving efficiency of these systems.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"32 1","pages":"113 - 121"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quantitative analysis of DC–DC converter models: a statistical perspective based on solar photovoltaic power storage\",\"authors\":\"S. R. Hole, Agam Das Goswami\",\"doi\":\"10.1515/ehs-2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Photovoltaic (PV) systems have paved their way into general households due to their high efficiency, low deployment cost and huge power savings. These advantages combined with Government incentives further assist in wide-scale adoptability of the solar powered systems. PV systems generate direct current (DC) outputs, which needs to be converted into alternating current (AC) via inverters. The efficiency of inverter design decides the overall efficiency of the PV system, which allows effective utilization of the solar power for feeding to grid or for local usage. In order to design effective inverter models, a large number of electrical configurations are designed by researchers over the years. These include, stand-alone inverters, grid-tie inverters, battery backup inverters and hybrid inverters, each of which are further divided into multiple sub-categories. Each of these sub-categories have a different application, for instance, string-converters are used for moderate power applications up-to 150k W, while central converters are used for high power applications above 80k W, etc. Apart from power capabilities, these designs vary in terms of efficiency of conversion, usability, cost, etc. Due to so many parametric variations, effective selection of these converters for a given PV application becomes ambiguous. In order to reduce this ambiguity, the underlying text statistically evaluates performance of some of the most efficient PV converter models, and compares them on the basis of power capabilities, accuracy of conversion, converter used, control model used, etc. This review will assist researchers and system designers to select the best suited models for their given applications, and thus reduce the time needed for efficient PV inverter system design. This text also recommends future research which can be adopted for improving efficiency of these systems.\",\"PeriodicalId\":36885,\"journal\":{\"name\":\"Energy Harvesting and Systems\",\"volume\":\"32 1\",\"pages\":\"113 - 121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Harvesting and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ehs-2021-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2021-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Quantitative analysis of DC–DC converter models: a statistical perspective based on solar photovoltaic power storage
Abstract Photovoltaic (PV) systems have paved their way into general households due to their high efficiency, low deployment cost and huge power savings. These advantages combined with Government incentives further assist in wide-scale adoptability of the solar powered systems. PV systems generate direct current (DC) outputs, which needs to be converted into alternating current (AC) via inverters. The efficiency of inverter design decides the overall efficiency of the PV system, which allows effective utilization of the solar power for feeding to grid or for local usage. In order to design effective inverter models, a large number of electrical configurations are designed by researchers over the years. These include, stand-alone inverters, grid-tie inverters, battery backup inverters and hybrid inverters, each of which are further divided into multiple sub-categories. Each of these sub-categories have a different application, for instance, string-converters are used for moderate power applications up-to 150k W, while central converters are used for high power applications above 80k W, etc. Apart from power capabilities, these designs vary in terms of efficiency of conversion, usability, cost, etc. Due to so many parametric variations, effective selection of these converters for a given PV application becomes ambiguous. In order to reduce this ambiguity, the underlying text statistically evaluates performance of some of the most efficient PV converter models, and compares them on the basis of power capabilities, accuracy of conversion, converter used, control model used, etc. This review will assist researchers and system designers to select the best suited models for their given applications, and thus reduce the time needed for efficient PV inverter system design. This text also recommends future research which can be adopted for improving efficiency of these systems.