{"title":"扩展逻辑的内部模型:第1部分","authors":"J. Kennedy, M. Magidor, Jouko Vaananen","doi":"10.1142/S0219061321500124","DOIUrl":null,"url":null,"abstract":"We introduce a new inner model $C(aa)$ arising from stationary logic. We show that assuming a proper class of Woodin cardinals, or alternatively $MM^{++}$, the regular uncountable cardinals of $V$ are measurable in the inner model $C(aa)$, the theory of $C(aa)$ is (set) forcing absolute, and $C(aa)$ satisfies CH. We introduce an auxiliary concept that we call club determinacy, which simplifies the construction of $C(aa)$ greatly but may have also independent interest. Based on club determinacy, we introduce the concept of aa-mouse which we use to prove CH and other properties of the inner model $C(aa)$.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"63 1","pages":"2150012:1-2150012:53"},"PeriodicalIF":0.9000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Inner models from extended logics: Part 1\",\"authors\":\"J. Kennedy, M. Magidor, Jouko Vaananen\",\"doi\":\"10.1142/S0219061321500124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new inner model $C(aa)$ arising from stationary logic. We show that assuming a proper class of Woodin cardinals, or alternatively $MM^{++}$, the regular uncountable cardinals of $V$ are measurable in the inner model $C(aa)$, the theory of $C(aa)$ is (set) forcing absolute, and $C(aa)$ satisfies CH. We introduce an auxiliary concept that we call club determinacy, which simplifies the construction of $C(aa)$ greatly but may have also independent interest. Based on club determinacy, we introduce the concept of aa-mouse which we use to prove CH and other properties of the inner model $C(aa)$.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"63 1\",\"pages\":\"2150012:1-2150012:53\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219061321500124\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219061321500124","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
We introduce a new inner model $C(aa)$ arising from stationary logic. We show that assuming a proper class of Woodin cardinals, or alternatively $MM^{++}$, the regular uncountable cardinals of $V$ are measurable in the inner model $C(aa)$, the theory of $C(aa)$ is (set) forcing absolute, and $C(aa)$ satisfies CH. We introduce an auxiliary concept that we call club determinacy, which simplifies the construction of $C(aa)$ greatly but may have also independent interest. Based on club determinacy, we introduce the concept of aa-mouse which we use to prove CH and other properties of the inner model $C(aa)$.
期刊介绍:
The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.