扩展逻辑的内部模型:第1部分

IF 0.9 1区 数学 Q1 LOGIC
J. Kennedy, M. Magidor, Jouko Vaananen
{"title":"扩展逻辑的内部模型:第1部分","authors":"J. Kennedy, M. Magidor, Jouko Vaananen","doi":"10.1142/S0219061321500124","DOIUrl":null,"url":null,"abstract":"We introduce a new inner model $C(aa)$ arising from stationary logic. We show that assuming a proper class of Woodin cardinals, or alternatively $MM^{++}$, the regular uncountable cardinals of $V$ are measurable in the inner model $C(aa)$, the theory of $C(aa)$ is (set) forcing absolute, and $C(aa)$ satisfies CH. We introduce an auxiliary concept that we call club determinacy, which simplifies the construction of $C(aa)$ greatly but may have also independent interest. Based on club determinacy, we introduce the concept of aa-mouse which we use to prove CH and other properties of the inner model $C(aa)$.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"63 1","pages":"2150012:1-2150012:53"},"PeriodicalIF":0.9000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Inner models from extended logics: Part 1\",\"authors\":\"J. Kennedy, M. Magidor, Jouko Vaananen\",\"doi\":\"10.1142/S0219061321500124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new inner model $C(aa)$ arising from stationary logic. We show that assuming a proper class of Woodin cardinals, or alternatively $MM^{++}$, the regular uncountable cardinals of $V$ are measurable in the inner model $C(aa)$, the theory of $C(aa)$ is (set) forcing absolute, and $C(aa)$ satisfies CH. We introduce an auxiliary concept that we call club determinacy, which simplifies the construction of $C(aa)$ greatly but may have also independent interest. Based on club determinacy, we introduce the concept of aa-mouse which we use to prove CH and other properties of the inner model $C(aa)$.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"63 1\",\"pages\":\"2150012:1-2150012:53\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219061321500124\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219061321500124","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 5

摘要

我们引入了一个由平稳逻辑产生的新的内模$C(aa)$。我们证明了假设一个适当的Woodin基数类,或者$MM^{++}$, $V$的正则不可数基数在内模型$C(aa)$中是可测量的,$C(aa)$的理论是(集)强迫绝对的,$C(aa)$满足CH。我们引入了一个辅助概念,我们称之为俱乐部确定性,它极大地简化了$C(aa)$的构造,但也可能具有独立的兴趣。在俱乐部确定性的基础上,我们引入了aa-mouse的概念,用来证明CH和内部模型$C(aa)$的其他性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inner models from extended logics: Part 1
We introduce a new inner model $C(aa)$ arising from stationary logic. We show that assuming a proper class of Woodin cardinals, or alternatively $MM^{++}$, the regular uncountable cardinals of $V$ are measurable in the inner model $C(aa)$, the theory of $C(aa)$ is (set) forcing absolute, and $C(aa)$ satisfies CH. We introduce an auxiliary concept that we call club determinacy, which simplifies the construction of $C(aa)$ greatly but may have also independent interest. Based on club determinacy, we introduce the concept of aa-mouse which we use to prove CH and other properties of the inner model $C(aa)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信