{"title":"废水处理用生物吸附剂","authors":"V. Halysh, I. Trus, V. Radovenchyk, M. Gomelya","doi":"10.20535/2617-9741.3.2021.241049","DOIUrl":null,"url":null,"abstract":"Biosorption is a promising technology for removing various pollutants from industrial wastewater, which consists in the use of secondary plant raw materials (e.g., agro-industrial waste) to solve environmental pollution problems. The purpose of this study is to evaluate the potential of nut shells as a biosorbent, to study the effect of alkaline modification of shells on their properties and to study the use of spent biosorbents as additives in cement. The influence of the fractional composition of the initial material on its sorption capacity and the influence of the modification of shells with alkaline solution on the properties of the obtained biosorbents are investigated. The yield of the final products was determined gravimetrically as the ratio of the mass of the product to the mass of the raw material. The sorption capacity was studied using model solutions. The concentration of sodium hydroxide solutions was determined by titration, and the cationic dye by spectrophotometric method. Methylene blue was used as a test dye. The studies have shown that the fractional composition of the material largely determines its sorption properties. Reducing the particle size of the nut shells leads to an increase in the sorption efficiency of methylene blue from 17.2% for the fraction with a size of 1.5-2.0 mm to 39.2% for the fraction with a size of 0.5-1.0 mm. The static exchange capacity increases by an average of 30 % for each subsequent fraction. To improve the sorption properties of the initial material, along with grinding, it is advisable to use chemical modification. The method of alkaline modification was used, which is accompanied by partial destruction of the aromatic component of raw materials and low molecular weight polysaccharides and by removal of extractives of different nature, which leads to the formation of a more porous structure. The maximum sorption efficiency of methylene blue (80 %) corresponds to the biosorbent obtained from nut shells (fractional composition 0.5-1.0 mm) by modifying with 5 % NaOH solution for 180 min at a temperature of 100 oC. Alkaline treatment significantly improves the adsorption capacity of the biosorbent to the cationic dye compared to the initial material. The sorption capacity of nut shells and biosorbent based on shells was studied as a function of pH of aqueous dye solution and duration of contact. It was found that pH of the aqueous solution had a significant effect on the sorption of the dye and the maximum value was reached at pH 6. This is due to the electrokinetic properties of the surface of lignocellulosic materials - the ability to change charge depending on pH (positive in acidic, negative in neutral and alkaline), due to the presence of different functional groups. The study of kinetics showed that the maximum rate of absorption of methylene blue corresponded to the first 30 minutes of contact. Sorption equilibrium is achieved within 240 minutes of contact. Sorption kinetics was also studied using pseudo-first and pseudo-second order models, as well as a diffusion model. The pseudo-second order kinetic model (R2 = 0.99) best describes the absorption kinetics of the cationic dye and suggests that the fixation of methylene blue on the surface of the biosorbent occurs due to various mechanisms. The problem of further use of spent sorption materials is no less important than the efficiency of sorbents in creating an effective integrated water treatment technology. Spent biosorbent was used as an additive to the composition of cement type I/500. The use of plant material in the amount of 5% will not lead to a significant deterioration of the physical and mechanical properties of cement. This indicates the prospects of such an approach in the utilization of spent sorbents. In further research, it is planned to investigate various modification options for plant materials for obtaining highly effective biosorbents of multipurpose function for the solution of environmental problems.","PeriodicalId":20682,"journal":{"name":"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosorbents for wastewater treatment\",\"authors\":\"V. Halysh, I. Trus, V. Radovenchyk, M. Gomelya\",\"doi\":\"10.20535/2617-9741.3.2021.241049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biosorption is a promising technology for removing various pollutants from industrial wastewater, which consists in the use of secondary plant raw materials (e.g., agro-industrial waste) to solve environmental pollution problems. The purpose of this study is to evaluate the potential of nut shells as a biosorbent, to study the effect of alkaline modification of shells on their properties and to study the use of spent biosorbents as additives in cement. The influence of the fractional composition of the initial material on its sorption capacity and the influence of the modification of shells with alkaline solution on the properties of the obtained biosorbents are investigated. The yield of the final products was determined gravimetrically as the ratio of the mass of the product to the mass of the raw material. The sorption capacity was studied using model solutions. The concentration of sodium hydroxide solutions was determined by titration, and the cationic dye by spectrophotometric method. Methylene blue was used as a test dye. The studies have shown that the fractional composition of the material largely determines its sorption properties. Reducing the particle size of the nut shells leads to an increase in the sorption efficiency of methylene blue from 17.2% for the fraction with a size of 1.5-2.0 mm to 39.2% for the fraction with a size of 0.5-1.0 mm. The static exchange capacity increases by an average of 30 % for each subsequent fraction. To improve the sorption properties of the initial material, along with grinding, it is advisable to use chemical modification. The method of alkaline modification was used, which is accompanied by partial destruction of the aromatic component of raw materials and low molecular weight polysaccharides and by removal of extractives of different nature, which leads to the formation of a more porous structure. The maximum sorption efficiency of methylene blue (80 %) corresponds to the biosorbent obtained from nut shells (fractional composition 0.5-1.0 mm) by modifying with 5 % NaOH solution for 180 min at a temperature of 100 oC. Alkaline treatment significantly improves the adsorption capacity of the biosorbent to the cationic dye compared to the initial material. The sorption capacity of nut shells and biosorbent based on shells was studied as a function of pH of aqueous dye solution and duration of contact. It was found that pH of the aqueous solution had a significant effect on the sorption of the dye and the maximum value was reached at pH 6. This is due to the electrokinetic properties of the surface of lignocellulosic materials - the ability to change charge depending on pH (positive in acidic, negative in neutral and alkaline), due to the presence of different functional groups. The study of kinetics showed that the maximum rate of absorption of methylene blue corresponded to the first 30 minutes of contact. Sorption equilibrium is achieved within 240 minutes of contact. Sorption kinetics was also studied using pseudo-first and pseudo-second order models, as well as a diffusion model. The pseudo-second order kinetic model (R2 = 0.99) best describes the absorption kinetics of the cationic dye and suggests that the fixation of methylene blue on the surface of the biosorbent occurs due to various mechanisms. The problem of further use of spent sorption materials is no less important than the efficiency of sorbents in creating an effective integrated water treatment technology. Spent biosorbent was used as an additive to the composition of cement type I/500. The use of plant material in the amount of 5% will not lead to a significant deterioration of the physical and mechanical properties of cement. This indicates the prospects of such an approach in the utilization of spent sorbents. In further research, it is planned to investigate various modification options for plant materials for obtaining highly effective biosorbents of multipurpose function for the solution of environmental problems.\",\"PeriodicalId\":20682,\"journal\":{\"name\":\"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/2617-9741.3.2021.241049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2617-9741.3.2021.241049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biosorption is a promising technology for removing various pollutants from industrial wastewater, which consists in the use of secondary plant raw materials (e.g., agro-industrial waste) to solve environmental pollution problems. The purpose of this study is to evaluate the potential of nut shells as a biosorbent, to study the effect of alkaline modification of shells on their properties and to study the use of spent biosorbents as additives in cement. The influence of the fractional composition of the initial material on its sorption capacity and the influence of the modification of shells with alkaline solution on the properties of the obtained biosorbents are investigated. The yield of the final products was determined gravimetrically as the ratio of the mass of the product to the mass of the raw material. The sorption capacity was studied using model solutions. The concentration of sodium hydroxide solutions was determined by titration, and the cationic dye by spectrophotometric method. Methylene blue was used as a test dye. The studies have shown that the fractional composition of the material largely determines its sorption properties. Reducing the particle size of the nut shells leads to an increase in the sorption efficiency of methylene blue from 17.2% for the fraction with a size of 1.5-2.0 mm to 39.2% for the fraction with a size of 0.5-1.0 mm. The static exchange capacity increases by an average of 30 % for each subsequent fraction. To improve the sorption properties of the initial material, along with grinding, it is advisable to use chemical modification. The method of alkaline modification was used, which is accompanied by partial destruction of the aromatic component of raw materials and low molecular weight polysaccharides and by removal of extractives of different nature, which leads to the formation of a more porous structure. The maximum sorption efficiency of methylene blue (80 %) corresponds to the biosorbent obtained from nut shells (fractional composition 0.5-1.0 mm) by modifying with 5 % NaOH solution for 180 min at a temperature of 100 oC. Alkaline treatment significantly improves the adsorption capacity of the biosorbent to the cationic dye compared to the initial material. The sorption capacity of nut shells and biosorbent based on shells was studied as a function of pH of aqueous dye solution and duration of contact. It was found that pH of the aqueous solution had a significant effect on the sorption of the dye and the maximum value was reached at pH 6. This is due to the electrokinetic properties of the surface of lignocellulosic materials - the ability to change charge depending on pH (positive in acidic, negative in neutral and alkaline), due to the presence of different functional groups. The study of kinetics showed that the maximum rate of absorption of methylene blue corresponded to the first 30 minutes of contact. Sorption equilibrium is achieved within 240 minutes of contact. Sorption kinetics was also studied using pseudo-first and pseudo-second order models, as well as a diffusion model. The pseudo-second order kinetic model (R2 = 0.99) best describes the absorption kinetics of the cationic dye and suggests that the fixation of methylene blue on the surface of the biosorbent occurs due to various mechanisms. The problem of further use of spent sorption materials is no less important than the efficiency of sorbents in creating an effective integrated water treatment technology. Spent biosorbent was used as an additive to the composition of cement type I/500. The use of plant material in the amount of 5% will not lead to a significant deterioration of the physical and mechanical properties of cement. This indicates the prospects of such an approach in the utilization of spent sorbents. In further research, it is planned to investigate various modification options for plant materials for obtaining highly effective biosorbents of multipurpose function for the solution of environmental problems.