自对偶码的系统构造

J. Carlach, A. Otmani
{"title":"自对偶码的系统构造","authors":"J. Carlach, A. Otmani","doi":"10.1109/TIT.2003.815814","DOIUrl":null,"url":null,"abstract":"A new coding construction scheme of block codes using short base codes and permutations that enables the construction of binary self-dual codes is presented in Cadic et al. (2001) and Carlach et al. (1999, 2000). The scheme leads to doubly-even (resp,. singly-even) self-dual codes provided the base code is a doubly-even self-dual code and the number of permutations is even (resp., odd). We study the particular case where the base code is the [8, 4, 4] extended Hamming. In this special case, we construct a new [88, 44, 16] extremal doubly-even self-dual code and we give a new unified construction of the five [32, 16, 8] extremal doubly-even self-dual codes.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"13 1","pages":"3005-3009"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A systematic construction of self-dual codes\",\"authors\":\"J. Carlach, A. Otmani\",\"doi\":\"10.1109/TIT.2003.815814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new coding construction scheme of block codes using short base codes and permutations that enables the construction of binary self-dual codes is presented in Cadic et al. (2001) and Carlach et al. (1999, 2000). The scheme leads to doubly-even (resp,. singly-even) self-dual codes provided the base code is a doubly-even self-dual code and the number of permutations is even (resp., odd). We study the particular case where the base code is the [8, 4, 4] extended Hamming. In this special case, we construct a new [88, 44, 16] extremal doubly-even self-dual code and we give a new unified construction of the five [32, 16, 8] extremal doubly-even self-dual codes.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"13 1\",\"pages\":\"3005-3009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.815814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.815814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

Cadic et al.(2001)和carach et al.(1999,2000)提出了一种新的利用短基码和置换的分组码编码构造方案,该方案能够构造二进制自对偶码。该方案可实现双平衡。假设基码是双偶自对偶码,并且排列的数目是偶的(例如:奇怪的)。我们研究了基码为[8,4,4]扩展汉明的特殊情况。在这种特殊情况下,构造了一个新的[88,44,16]极值双偶自对偶码,并给出了5个[32,16,8]极值双偶自对偶码的一个新的统一构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic construction of self-dual codes
A new coding construction scheme of block codes using short base codes and permutations that enables the construction of binary self-dual codes is presented in Cadic et al. (2001) and Carlach et al. (1999, 2000). The scheme leads to doubly-even (resp,. singly-even) self-dual codes provided the base code is a doubly-even self-dual code and the number of permutations is even (resp., odd). We study the particular case where the base code is the [8, 4, 4] extended Hamming. In this special case, we construct a new [88, 44, 16] extremal doubly-even self-dual code and we give a new unified construction of the five [32, 16, 8] extremal doubly-even self-dual codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信