具有建模误差的有限频谱分配车道保持控制

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Illés Vörös, Balázs Várszegi, D. Takács
{"title":"具有建模误差的有限频谱分配车道保持控制","authors":"Illés Vörös, Balázs Várszegi, D. Takács","doi":"10.1115/dscc2019-8960","DOIUrl":null,"url":null,"abstract":"\n Lane keeping control of the single track vehicle model with linear tire characteristics is analyzed in the presence of time delay. In order to compensate time delay, the predictor control approach called finite spectrum assignment is applied. This controller uses an internal model of the plant to predict current system states in spite of the time delay. The predictions are based on a simplified version of the vehicle model, neglecting tire dynamics. The predictive control approach is compared with traditional feedback control using analytically derived stability maps and numerical simulations. Robustness to parameter mismatches and numerical issues related to the implementation of the control law are also analyzed.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Lane Keeping Control Using Finite Spectrum Assignment With Modeling Errors\",\"authors\":\"Illés Vörös, Balázs Várszegi, D. Takács\",\"doi\":\"10.1115/dscc2019-8960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Lane keeping control of the single track vehicle model with linear tire characteristics is analyzed in the presence of time delay. In order to compensate time delay, the predictor control approach called finite spectrum assignment is applied. This controller uses an internal model of the plant to predict current system states in spite of the time delay. The predictions are based on a simplified version of the vehicle model, neglecting tire dynamics. The predictive control approach is compared with traditional feedback control using analytically derived stability maps and numerical simulations. Robustness to parameter mismatches and numerical issues related to the implementation of the control law are also analyzed.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-8960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-8960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

分析了具有线性轮胎特性的单轨车辆模型在存在时滞情况下的车道保持控制问题。为了补偿时滞,采用了有限频谱分配预测器控制方法。该控制器使用对象的内部模型来预测当前系统的状态,尽管存在时间延迟。这些预测是基于车辆模型的简化版本,忽略了轮胎动力学。利用解析导出的稳定性图和数值模拟,将预测控制方法与传统的反馈控制方法进行了比较。对参数失配的鲁棒性和控制律实施的数值问题也进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lane Keeping Control Using Finite Spectrum Assignment With Modeling Errors
Lane keeping control of the single track vehicle model with linear tire characteristics is analyzed in the presence of time delay. In order to compensate time delay, the predictor control approach called finite spectrum assignment is applied. This controller uses an internal model of the plant to predict current system states in spite of the time delay. The predictions are based on a simplified version of the vehicle model, neglecting tire dynamics. The predictive control approach is compared with traditional feedback control using analytically derived stability maps and numerical simulations. Robustness to parameter mismatches and numerical issues related to the implementation of the control law are also analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信